Внутреннее строение сплавов. Строение металлов и сплавов Кристаллическая решетка металлов

Внутреннее строение сплавов. Строение металлов и сплавов Кристаллическая решетка металлов
Внутреннее строение сплавов. Строение металлов и сплавов Кристаллическая решетка металлов

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Внутреннее строение металлов и сплавов

1. Атомное строение металлов

2. Полиморфизм. Анизотропия

3. Строение реальных кристаллов и дефекты кристаллической решетки

1 . Атомное строение металлов

В огромном ряду материалов, с незапамятных времен известных человеку и широко используемых им в своей жизни и деятельности, металлы всегда занимали особое место.

Подтверждение этому: и в названиях эпох (золотой, серебряный, бронзовый, железный века), на которые греки делили историю человечества: и в археологических находках металлических изделий (кованые медные украшения, сельскохозяйственные орудия); и в повсеместном использовании металлов и сплавов в современной технике.

Причина этого - в особых свойствах металлов, выгодно отличающих их от других материалов и делающих во многих случаях незаменимыми.

Металлы - один из классов конструкционных материалов, характеризующийся определенным набором свойств:

· «металлический блеск» (хорошая отражательная способность);

· пластичность;

· высокая теплопроводность;

· высокая электропроводность.

Данные свойства обусловлены особенностями строения металлов. Согласно теории металлического состояния, металл представляет собой вещество, состоящее из положительных ядер, вокруг которых по орбиталям вращаются электроны. На последнем уровне число электронов невелико и они слабо связаны с ядром. Эти электроны имеют возможность перемещаться по всему объему металла, т.е. принадлежать целой совокупности атомов.

Таким образом, пластичность, теплопроводность и электропроводность обеспечиваются наличием «электронного газа».

Все металлы, затвердевающие в нормальных условиях, представляют собой кристаллические вещества, то есть укладка атомов в них характеризуется определенным порядком - периодичностью, как по различным направлениям, так и по различным плоскостям. Этот порядок определяется понятием кристаллическая решетка.

Другими словами, кристаллическая решетка это воображаемая пространственная решетка, в узлах которой располагаются частицы, образующие твердое тело.

Элементарная ячейка - элемент объема из минимального числа атомов, многократным переносом которого в пространстве можно построить весь кристалл.

Элементарная ячейка характеризует особенности строения кристалла. Основными параметрами кристалла являются:

Рис.1.1. Схема кристаллической решетки

размеры ребер элементарной ячейки. a, b, c - периоды решетки - расстояния между центрами ближайших атомов. В одном направлении выдерживаются строго определенными.

углы между осями ().

координационное число (К) указывает на число атомов, расположенных на ближайшем одинаковом расстоянии от любого атома в решетке.

базис решетки количество атомов, приходящихся на одну элементарную ячейку решетки.

плотность упаковки атомов в кристаллической решетке - объем, занятый атомами, которые условно рассматриваются как жесткие шары. Ее определяют как отношение объема, занятого атомами к объему ячейки (для объемно-центрированной кубической решетки - 0,68, для гранецентрированной кубической решетки - 0,74)

Классификация возможных видов кристаллических решеток была проведена французским ученым О. Браве, соответственно они получили название «решетки Браве». Всего для кристаллических тел существует четырнадцать видов решеток, разбитых на четыре типа;

Рис. 1.2. Основные типы кристаллических решеток: а - объемно-центрированная кубическая; б- гранецентрированная кубическая; в - гексагональная плотноупакованная

примитивный - узлы решетки совпадают с вершинами элементарных ячеек;

базоцентрированный - атомы занимают вершины ячеек и два места в противоположных гранях;

объемно-центрированный - атомы занимают вершины ячеек и ее центр;

гранецентрированный - атомы занимают вершины ячейки и центры всех шести граней

Основными типами кристаллических решеток являются:

1. Объемно-центрированная кубическая (ОЦК) (см. рис.1.2а), атомы располагаются в вершинах куба и в его центре (V, W, Ti,)

2. Гранецентрированная кубическая (ГЦК) (см. рис. 1.2б), атомы располагаются в вершинах куба и по центру каждой из 6 граней (Ag, Au,)

3. Гексагональная, в основании которой лежит шестиугольник:

o простая - атомы располагаются в вершинах ячейки и по центру 2 оснований (углерод в виде графита);

o плотноупакованная (ГПУ) - имеется 3 дополнительных атома в средней плоскости (цинк).

2 . Полиморфизм. Анизотропия

металл кристаллический атомный полиморфизм

Свойства тела зависят от природы атомов, из которых оно состоит, и от силы взаимодействия между этими атомами. Силы взаимодействия между атомами в значительной степени определяются расстояниями между ними. В аморфных телах с хаотическим расположением атомов в пространстве расстояния между атомами в различных направлениях равны, следовательно, свойства будут одинаковые, то есть аморфные тела изотропны.

В кристаллических телах атомы правильно располагаются в пространстве, причем по разным направлениям расстояния между атомами неодинаковы, что предопределяет существенные различия в силах взаимодействия между ними и, в конечном результате, разные свойства. Зависимость свойств от направления называется анизотропией

Чтобы понять явление анизотропии необходимо выделить кристаллографические плоскости и кристаллографические направления в кристалле.

Плоскость, проходящая через узлы кристаллической решетки, называется кристаллографической плоскостью.

Прямая, проходящая через узлы кристаллической решетки, называется кристаллографическим направлением.

Для обозначения кристаллографических плоскостей и направлений пользуются индексами Миллера. Чтобы установить индексы Миллера, элементарную ячейку вписывают в пространственную систему координат (оси X,Y, Z - кристаллографические оси). За единицу измерения принимается период решетки.

Рис.1.3. Примеры обозначения кристаллографических плоскостей (а) и кристаллографических направлений (б)

Для определения индексов кристаллографической кристалло-графической плоскости необходимо:

установить координаты точек пересечения плоскости с осями координат в единицах периода решетки;

взять обратные значения этих величин;

привести их к наименьшему целому кратному, каждому из полученных чисел.

Полученные значения простых целых чисел, не имеющие общего множителя, являются индексами Миллера для плоскости, указываются в круглых скобках. Примеры обозначения кристаллографических плоскостей на рис. 1.3 а.

Другими словами, индекс по оси показывает на сколько частей плоскость делит осевую единицу по данной оси. Плоскости,параллельные оси, имеют по ней индекс 0 (110)

Ориентация прямой определяется координатами двух точек. Для определения индексов кристаллографического направления необходимо:

одну точку направления совместить с началом координат;

установить координаты любой другой точки, лежащей на прямой, в единицах периода решетки

привести отношение этих координат к отношению трех наименьших целых чисел.

Индексы кристаллографических направлений указываются в квадратных скобкаж

В кубической решетке индексы направления, перпендикулярного плоскости (hkl) имеют те же индексы .

Способность некоторых металлов существовать в различных кристаллических формах в зависимости от внешних условий (давление, температура) называется аллотропией или полиморфизмом.

Каждый вид решетки представляет собой аллотропическое видоизменение или модификацию.

Примером аллотропического видоизменения в зависимости от температуры является железо (Fe).

Fe: - ОЦК - ;

ОЦК - ; (высокотемпературное)

Превращение одной модификации в другую протекает при постоянной температуре и сопровождается тепловым эффектом. Видоизменения элемента обозначается буквами греческого алфавита в виде индекса у основного обозначения металла.

Примером аллотропического видоизменения, обусловленного изменением давления, является углерод: при низких давлениях образуется графит, а при высоких - алмаз.

Используя явление полиморфизма, можно упрочнять и разупрочнять сплавы при помощи термической обработки.

3 . Строение реальных кристаллов и дефекты кристаллической решетки

Из жидкого расплава можно вырастить монокристалл. Их обычно используют в лабораториях для изучения свойств того или иного вещества.

Металлы и сплавы, полученные в обычных условиях, состоят из большого количества кристаллов, то есть, имеют поликристаллическое строение. Эти кристаллы называются зернами. Они имеют неправильную форму и различно ориентированы в пространстве. Каждое зерно имеет свою ориентировку кристаллической решетки, отличную от ориентировки соседних зерен, вследствие чего свойства реальных металлов усредняются, и явления анизотропии не наблюдается. В кристаллической решетке реальных металлов имеются различные дефекты (несовершенства), которые нарушают связи между атомами и оказывают влияние на свойства металлов. Различают следующие структурные несовершенства:

· точечные - малые во всех трех измерениях;

· линейные - малые в двух измерениях и сколь угодно протяженные в третьем;

· поверхностные - малые в одном измерении.

Точеные дефекты

Одним из распространенных несовершенств кристаллического строения является наличие точечных дефектов: вакансий, дислоцированных атомов и примесей. (рис. 2.1.)

Рис.2.1. Точечные дефекты

Вакансия - отсутствие атомов в узлах кристаллической решетки, «дырки», которые образовались в результате различных причин. Образуется при переходе атомов с поверхности в окружающую среду или из узлов решетки на поверхность (границы зерен, пустоты, трещины и т. д.), в результате пластической деформации, при бомбардировке тела атомами или частицами высоких энергий (облучение в циклотроне или нейтронной облучение в ядерном реакторе). Концентрация вакансий в значительной степени определяется температурой тела. Перемещаясь по кристаллу, одиночные вакансии могут встречаться. И объединяться в дивакансии. Скопление многих вакансий может привести к образованию пор и пустот.

Дислоцированный атом - это атом, вышедший из узла решетки и занявший место в междоузлие. Концентрация дислоцированных атомов значительно меньше, чем вакансий, так как для их образования требуются существенные затраты энергии. При этом на месте переместившегося атома образуется вакансия.

Примесные атомы всегда присутствуют в металле, так как практически невозможно выплавить химически чистый металл. Они могут иметь размеры больше или меньше размеров основных атомов и располагаются в узлах решетки или междоузлиях.

Точечные дефекты вызывают незначительные искажения решетки, что может привести к изменению свойств тела (электропроводность, магнитные свойства), их наличие способствует процессам диффузии и протеканию фазовых превращений в твердом состоянии. При перемещении по материалу дефекты могут взаимодействовать.

Линейные дефекты:

Основными линейными дефектами являются дислокации. Априорное представление о дислокациях впервые использовано в 1934 году Орованом и Тейлером при исследовании пластической деформации кристаллических материалов, для объяснения большой разницы между практической и теоретической прочностью металла.

Дислокация - это дефекты кристаллического строения, представляющие собой линии, вдоль и вблизи которых нарушено характерное для кристалла правильное расположение атомных плоскостей.

Простейшие виды дислокаций - краевые и винтовые.

Краевая дислокация представляет собой линию, вдоль которой обрывается внутри кристалла край “лишней“ полуплоскости (рис. 2.2)

Рис. 2.2. Краевая дислокация (а) и механизм ее образования (б)

Неполная плоскость называется экстраплоскостью.

Большинство дислокаций образуются путем сдвигового механизма. Ее образование можно описать при помощи следующей операции. Надрезать кристалл по плоскости АВСD, сдвинуть нижнюю часть относительно верхней на один период решетки в направлении, перпендикулярном АВ, а затем вновь сблизить атомы на краях разреза внизу.

Наибольшие искажения в расположении атомов в кристалле имеют место вблизи нижнего края экстраплоскости. Вправо и влево от края экстраплоскости эти искажения малы (несколько периодов решетки), а вдоль края экстраплоскости искажения простираются через весь кристалл и могут быть очень велики (тысячи периодов решетки) (рис. 2.3).

Если экстраплоскость находится в верхней части кристалла, то краевая дислокация - положительная (), если в нижней, то - отрицательная (). Дислокации одного знака отталкиваются, а противоположные притягиваются.

Рис. 2.3. Искажения в кристаллической решетке при наличии краевой дислокации

Другой тип дислокаций был описан Бюргерсом, и получил название винтовая дислокация

Винтовая дислокация получена при помощи частичного сдвига по плоскости Q вокруг линии EF (рис. 2.4) На поверхности кристалла образуется ступенька, проходящая от точки Е до края кристалла. Такой частичный сдвиг нарушает параллельность атомных слоев, кристалл превращается в одну атомную плоскость, закрученную по винту в виде полого геликоида вокруг линии EF, которая представляет границу, отделяющую часть плоскости скольжения, где сдвиг уже произошел, от части, где сдвиг не начинался. Вдоль линии EF наблюдается макроскопический характер области несовершенства, в других направлениях ее размеры составляют несколько периодов.

Если переход от верхних горизонтов к нижним осуществляется поворотом по часовой стрелке, то дислокация правая, а если поворотом против часовой стрелки - левая.

Рис. 2.4. Механизм образования винтовой дислокации

Винтовая дислокация не связана с какой-либо плоскостью скольжения, она может перемещаться по любой плоскости, проходящей через линию дислокации. Вакансии и дислоцированные атомы к винтовой дислокации не стекают.

В процессе кристаллизации атомы вещества, выпадающие из пара или раствора, легко присоединяются к ступеньке, что приводит к спиральному механизму роста кристалла.

Линии дислокаций не могут обрываться внутри кристалла, они должны либо быть замкнутыми, образуя петлю, либо разветвляться на несколько дислокаций, либо выходить на поверхность кристалла.

Дислокационная структура материала характеризуется плотностью дислокаций.

Плотность дислокаций в кристалле определяется как среднее число линий дислокаций, пересекающих внутри тела площадку площадью 1 м 2 , или как суммарная длина линий дислокаций в объеме 1 м 3

(см -2 ; м -2)

Плотность дислокаций изменяется в широких пределах и зависит от состояния материала. После тщательного отжига плотность дислокаций составляет 10 5 …10 7 м -2 , в кристаллах с сильно деформированной кристаллической решеткой плотность дислокаций достигает 10 15 …10 16 м -2 .

Плотность дислокации в значительной мере определяет пластичность и прочность материала (рис. 2.5)

Рис. 2.5. Влияние плотности дислокаций на прочность

Минимальная прочность определяется критической плотностью дислокаций

Если плотность меньше значения а, то сопротивление деформированию резко возрастает, а прочность приближается к теоретической. Повышение прочности достигается созданием металла с бездефектной структурой, а также повышением плотности дислокаций, затрудняющим их движение. В настоящее время созданы кристаллы без дефектов - нитевидные кристаллы длиной до 2 мм, толщиной 0,5…20 мкм - “усы“ с прочностью, близкой к теоретической: для железа = 13000 МПа, для меди =30000 МПа. При упрочнении металлов увеличением плотности дислокаций, она не должна превышать значений 10 15 …10 16 м -2 . В противном случае образуются трещины.

Дислокации влияют не только на прочность и пластичность, но и на другие свойства кристаллов. С увеличением плотности дислокаций возрастает внутреннее, изменяются оптические свойства, повышается электросопротивление металла. Дислокации увеличивают среднюю скорость диффузии в кристалле, ускоряют старение и другие процессы, уменьшают химическую стойкость, поэтому в результате обработки поверхности кристалла специальными веществами в местах выхода дислокаций образуются ямки.

Дислокации образуются при образовании кристаллов из расплава или газообразной фазы, при срастании блоков с малыми углами разориентировки. При перемещении вакансий внутри кристалла, они концентрируются, образуя полости в виде дисков. Если такие диски велики, то энергетически выгодно “захлопывание” их с образованием по краю диска краевой дислокации. Образуются дислокации при деформации, в процессе кристаллизации, при термической обработке.

Поверхностные дефекты- границы зерен, фрагментов и блоков (рис. 2.6).

Рис. 2.6. Разориентация зерен и блоков в металле

Размеры зерен составляют до 1000 мкм. Углы разориентации составляют до нескольких десятков градусов ().

Граница между зернами представляет собой тонкую в 5 - 10 атомных диаметров поверхностную зону с максимальным нарушением порядка в расположении атомов.

Строение переходного слоя способствует скоплению в нем дислокаций. На границах зерен повышена концентрация примесей, которые понижают поверхностную энергию. Однако и внутри зерна никогда не наблюдается идеального строения кристаллической решетки. Имеются участки, разориентированные один относительно другого на несколько градусов (). Эти участки называются фрагментами. Процесс деления зерен на фрагменты называется фрагментацией или полигонизацией.

В свою очередь каждый фрагмент состоит из блоков, размерами менее 10 мкм, разориентированных на угол менее одного градуса (). Такую структуру называют блочной или мозаичной.

Размещено на Allbest.ru

Подобные документы

    Основные типы решеток, точечные и линейные дефекты. Связь строения кристаллической решетки с механическими и физическими свойствами материала. Реальное строение кристаллов, формы пластической деформации. Свойства металлов, применяемых в строительстве.

    реферат , добавлен 30.07.2014

    Классификация дефектов кристаллической решетки металлов. Схема точечных дефектов в кристалле. Дислокация при кристаллизации или сдвиге. Расположение атомов в области винтовой дислокации. Поверхностные или двухмерные дефекты. Схема блочной структуры.

    лекция , добавлен 08.08.2009

    Направления и этапы исследований в сфере строения и свойств металлов, их отражение в трудах отечественных и зарубежных ученых разных эпох. Типы кристаллических решеток металлов, принципы их формирования. Основные физические и химические свойства сплавов.

    презентация , добавлен 29.09.2013

    Точечные дефекты в кристаллической решетке реальных металлов: вакансии, дислоцированные атомы и примеси. Образование линейных дефектов (дислокаций). Роль винтовой дислокации в формировании растущего кристалла. Влияние плотности дислокаций на прочность.

    презентация , добавлен 14.10.2013

    Характеристика химических и физических свойств металлов. Отношение металлов к окислителям - простым веществам. Физический смысл внутреннего трения материалов. Примеры применения метода внутреннего трения в металловедении. Поиск динамического модуля.

    курсовая работа , добавлен 30.10.2014

    Свойства и атомно-кристаллическое строение металлов. Энергетические условия процесса кристаллизации. Строение металлического слитка. Изучение связи между свойствами сплавов и типом диаграммы состояния. Компоненты и фазы железоуглеродистых сплавов.

    курсовая работа , добавлен 03.07.2015

    Распространенность металлов в природе. Содержание металлов в земной коре в свободном состоянии и в виде сплавов. Классификация областей современной металлургии в зависимости от методов выделения металлов. Характеристика металлургических процессов.

    презентация , добавлен 19.02.2015

    Классификация металлов по основному компоненту, по температуре плавления. Характерные признаки, отличающие металлы от неметаллов: внешний блеск, высокая прочность. Характерные особенности черных и цветных металлов. Анализ сплавов цветных металлов.

    контрольная работа , добавлен 04.08.2012

    Определение механических свойств конструкционных материалов путем испытания их на растяжение. Методы исследования качества, структуры и свойств металлов и сплавов, определение их твердости. Термическая обработка деформируемых алюминиевых сплавов.

    учебное пособие , добавлен 29.01.2011

    Сущность и назначение термической обработки металлов, порядок и правила ее проведения, разновидности и отличительные признаки. Термомеханическая обработка как новый метод упрочнения металлов и сплавов. Цели химико-термической обработки металлов.

Внутренним строением металлов называется строение и взаимное расположение их атомов, а также более крупная структура, видимая в микроскоп или невооруженным глазом.

Металлы по внутреннему строению представляют собой совокупность нейтральных атомов, положительно или отрицательно заряженных ионов и свободных электронов, образующих так называемый «электронный газ». Наличие «электронного газа» обусловливает высокую электро- и теплопроводность металлов, а взаимосвязь свободных электронов между собой и с ионами создает прочную связь, называемую металлической. Специфика металлической связи делает металлы пластичными (ковкими).

Кроме природы атомов на свойства металлов влияют характер связи между атомами, расстояние между ними и порядок их расположения.

Все металлы в твердом состоянии имеют кристаллическое строение, т.е. их атомы (ионы) расположены в строгом, периодически повторяющемся порядке, образуя в пространстве атомно-кристаллическую решетку (в противоположность аморфным твердым телам, атомы которых расположены в пространстве хаотично).

Порядок расположения атомов у различных металлов неодинаков. Обычно он определяется простыми характерными для большинства металлов (рис. 6) или сложными кристаллическими решетками. Линии на рис. 6 условные Атомы в действительности колеблются возле положений равновесия, т. е. в узлах кристаллической решетки. Расстояние между атомами в кристаллической решетке измеряется в ангстремах (1 Å=10 -9 нм). У большинства металлов расстояние между атомами находится в пределах 0,28-0,8 нм.


Рис 6. Порядок расположения атомов в простых решетках а - объемна я центрированной кубической (9 атомов), б - гранецентрированной кубической (14 атомов), в - гексагональной плотноупакованной (17 атомов)

Наименьший объем кристалла, дающий представление об атомной структуре металла во всем объеме, называется элементарной кристаллической ячейкой.

Получаемые обычным способом металлы представляют собой поликристаллические тела, состоящие из множества элементарных ячеек, ориентированных относительно друг друга самым различным образом. Ячейки имеют неправильную форму и называются кристаллитами, или зернами. Если сочетание элементарных ячеек правильное, по расположению атомов повторяющее элементарную ячейку, то образовавшееся тело называется монокристаллом.

Металлические сплавы, как и металлы, имеют кристаллическое строение. При этом в зависимости от взаимодействия компонентов они подразделяются на твердые растворы, химические соединения и механические смеси.

Твердые растворы образуются тогда, когда при сплавлении атомы одного элемента в разных количествах входят в кристаллическую решетку другого элемента, не изменяя в значительной мере ее формы. Элемент, сохранивший форму своей решетки, называется растворителем, а элемент, атомы которого вошли в эту решетку,- растворенным. По размещению атомов растворенного элемента в решетке растворителя различают твердые растворы замещения (атомы растворенного элемента располагаются в узлах решетки растворителя) и твердые растворы внедрения (атомы растворенного элемента находятся между атомами растворителя и узлами его решетки).

Если входящие в состав твердого раствора замещения компоненты имеют близкое строение решеток и атомов, то такие элементы могут образовывать непрерывный ряд твердых растворов, т. е. количество замещенных атомов может изменяться от 0 до 100 %.

При этом считается, что растворителем является тот элемент, содержание которого в сплаве более 50 %.

Растворы внедрения образуются элементами, сильно отличающимися строением решетки и размерами атомов.

Твердые растворы являются гомогенными (однородными) сплавами, так как их структура представляет собой одинаковые по составу и свойствам зерна. Свойства твердых растворов в значительной степени могут отличаться от свойств входящих в него компонентов. Все металлы в той или иной степени могут растворяться один в другом, образуя твердые растворы.

Химические соединения образуются при химическом взаимодействии атомов компонентов сплава, сопровождающемся значительным тепловым эффектом. При этом кристаллическая решетка химического соединения и все его свойства могут резко отличаться от решетки и свойств компонентов. В отличие от твердых растворов химические соединения обычно образуются между компонентами, имеющими большое различие в электронном строении атомов. Типичными примерами химических соединений являются соединения магния с оловом, свинцом, сурьмой, висмутом, серой, селеном, теллуром и др. По своей структуре они гомогенны.

Химические соединения металлов называются интерметаллическими (интерметаллидами), а соединения металлов с неметаллами (нитридами, гидридами, боридами, карбидами), обладающие металлической связью, - металлическими соединениями.

Механические смеси образуются тогда, когда при затвердении расплава атомы его компонентов не перемешиваются, а кристаллизуются в характерную каждому решетку. Структура таких сплавов гетерогенна (неоднородна) и представляет собой смесь кристаллов компонентов сплава, сохранивших свою структуру.

Рис. 7. Кривые охлаждения аморфного (а ), кристаллического тела (б) и металлов (в), где t к t п - температура кристаллизации и переохлаждения, °C; (T 1 -T 2) - время кристаллизации, с.

Строение кристаллического тела обусловливает следующие особенные их свойства по сравнению с аморфными:

§ различие свойств монокристаллов в различных направлениях, т. е. анизотропность, или векториальность, свойств;

§ наличие плоскостей скольжения, приложение внешних сил приводит к скольжению (сдвигу) одной плоскости относительно другой;

§ существование критической температуры при затвердевании или плавлении, при которой происходит переход из жидкого (расплавленного) состояния в твердое или наоборот.

Переход металла из жидкого состояния в твердое называется кристаллизацией, а из твердого в жидкое - плавлением. Если образование кристаллов происходит из жидкости при ее охлаждении, то этот процесс называется первичной кристаллизацией, если образование кристаллов идет в твердом состоянии тела, - вторичной кристаллизацией.

Процессы кристаллизации графически изображают кривыми, строящимися в координатах температура - время (рис. 7).

Явление переохлаждения в кристаллизующемся металле объясняется тем, что в период затвердевания происходит резкое снижение подвижности атомов, вследствие чего скачкообразно изменяется его внутренняя энергия. Это сопровождается выделением тепла, которое подогревает жидкую ванну и некоторое время (T 1 -Т 2) удерживает ее температуру постоянной, пока жидкость полностью не закристаллизуется.

Степень переохлаждения тем больше, чем больше скорость охлаждения.

Русский ученый-металлург Д. К. Чернов в 1878 г. установил, что процесс кристаллизации состоит из нескольких стадий. Первая стадия - образование зародышей (центров) кристаллизации. На последующих стадиях из этих центров образуются дендриты (древовидные образования), которые, срастаясь, образуют зерна (кристаллиты). При этом они не имеют правильной геометрической формы, так как в местах соприкосновения растущих кристаллов рост граней прекращается.

Величина зерна металла - важнейшая характеристика, которая определяет все основные его свойства. Мелкозернистый металл имеет более высокие характеристики твердости, прочности, ударной вязкости, но у него пониженная электропроводность, хуже магнитные свойства.

Размер зерна зависит от количества центров кристаллизации и скорости роста кристаллов (скорости охлаждения). Чем больше центров кристаллизации и меньше скорость их роста, тем меньше будет зерно.

Образование центров кристаллизации может происходить самопроизвольно или на имеющихся в жидком металле частицах примесей, что используется при модифицировании - введении в жидкий металл примесей (модификаторов).

На образование центров кристаллизации, а следовательно, и величину зерна влияет степень переохлаждения t к -t п . Чем больше степень переохлаждения, тем больше центров кристаллизации и мельче образующееся зерно.


Метки:

Вариант 1.

    В металлах тип связи:

    ковалентная полярная; 2) ионная; 3) металлическая; 4) ковалентная неполярная.

    Во внутреннем строении металлов имеются:

1) только катионы; 2) только анионы; 3) катионы и анионы; 4) катионы и нейтральные атомы.

    Жидкий металл при комнатной температуре – это:

1) железо; 2) ртуть; 3) золото; 4) литий.

    Золото алхимики считали символом:

    Неправильное суждение , о том, что все металлы:

1) обладают ковкостью; 2) обладают металлическим блеском; 3) обладают электропроводностью; 4) летучие вещества.

    Наиболее твёрдый металл:

1) натрий; 2) хром; 3) свинец; 4) литий.

    Металл, обладающий наибольшей плотностью:

1) железо; 2) медь; 3) золото; 4) титан.

    Лучше отражает свет:

1) свинец; 2) серебро; 3) цинк; 4) железо.

    Среди перечисленных веществ укажите те, которые являются металлами:

    кремний; 2) бериллий; 3) бор; 4) алюминий; 5) калий; 6) аргон; 7) сера; 8) олово.

Ответ дайте в виде последовательности цифр в порядке их возрастания.

Тест №4 Тема «Простые вещества – металлы»

Вариант 2.

    Металлы для завершения слоя:

1) отдают электроны; 2) принимают электроны; 3) отдают или принимают электроны; 4) у них слой завершённый.

2. Связь в металлах между катионами осуществляют:

1) свободные электроны; 2) анионы; 3) протоны; 4) нейтроны.

3. Самый пластичный из драгоценных металлов:

1) серебро; 2) платина; 3) золото; 4) ртуть.

    Медь алхимики считали символом:

1) Венеры; 2) Марса; 3) Солнца; 4) Сатурна.

5. Наиболее мягкий металл:

1) хром; 2) титан; 3) молибден; 4) свинец.

6. Наиболее тугоплавкий металл:

1) вольфрам; 2) ртуть; 3) золото; 4) титан.

7. Металл, обладающий наименьшей плотностью:

1) натрий; 2) олово; 3) свинец; 4) железо.

8. Обладает наибольшей электропроводностью:

1) железо; 2) золото; 3) алюминий; 4) серебро.

9. Расставьте перечисленные металлы в порядке увеличения плотности:

1) медь; 2) железо; 3) свинец; 4) алюминий; 5) золото.

Ответ дайте в виде последовательности цифр.

Ответы. Тема «Простые вещества – металлы»

1 вариант.

2 вариант.

убивать таких людей стало невозможно по тем или ... слой за слоем , «срезается» или ... завершённый ... вещества , для ... тест . И, тем ... завершения работы я не просто ... принимать или ... вариантом для ...
  • Грязь)? Книга начертанная! Ведь книга праведников, конечно, в иллийуне (возвышенном). А что тебе даст знать, что такое иллийун? Книга начертанная! (Таблица с Письменами)

    Документ

    ... или система образов проста , лаконична и закончена в своей красоте завершенности ... тем получить доступ к ним, и через них приобщиться к земной жизни для ... вариант универсального космизма. Но уже сейчас мы должны принимать ... электрон , за электроном - керн или ...

  • Давным-давно в волшебной стране Эквестрии

    Документ

    ... завершённости ... простых Минталок или любых других веществ , вызывающих зависимость. Бак, Рейдж, Дэш... Все из них ... отдаться воле Богини. Уже сейчас она принимает ... Тем не менее, для меня дело чести - дать вам этот вариант . Просто ... электронную ... завершения ...

  • Образовательный стандарт образовательная система «Школа 2100»

    Образовательный стандарт

    ... них (принимать ... металлов . Использование различных металлов ... кл. Завершенная предметная линия... завершённых ... и отдых в... электронном вариантах ). В них выставляются отметки (баллы или ... теме «Вещество и 1 Контрольный Значение воздуха для ... тест (выбери номер простого ...

  • 26.08.2008

    Внутреннее строение и свойства металлов и сплавов

    К машиностроительным материалам относятсяметаллы и их сплавы, древесина, пластмассы, резина, картон, бумага, стекло и др. Наибольшее применение при изготовлении машин получилиметаллы и их сплавы.

    Металлами называются вещества, обладающие высокой теплопроводностью и электрической проводимостью; ковкостью, блеском и другими характерными свойствами.

    В технике всеметаллы и сплавы принято делить на черные и цветные. К черным металлам относятся железо и сплавы на его основе. К цветным — все остальные металлы и сплавы. Для того чтобы правильно выбрать материал для изготовления деталей машин с учетом условий их эксплуатации, механических нагрузок и других факторов, влияющих на работоспособность и надежность машин, необходимо знать внутреннее строение, физико-химические, механические и технологические свойства металлов.

    Металлы и их сплавы в твердом состоянии имеют кристаллическое строение. Их атомы (ионы, молекулы) располагаются в пространстве в строго определенном порядке и образуют пространственную кристаллическую решетку.

    Наименьший комплекс атомов, который при многократном повторении в пространстве воспроизводит решетку, называется элементарной кристаллической ячейкой.

    Форма элементарной кристаллической ячейки определяет совокупность свойств металлов: блеск, плавкость, теплопроводность, электропроводность, обрабатываемость и анизотропность (различие свойств в различных плоскостях кристаллической решетки) .

    Пространственные кристаллические решетки образуются при переходе металла из жидкого состояния в твердое. Этот процесс называется кристаллизацией. Процессы кристаллизации впервые были изучены русским ученым Д. К- Черновым.

    Кристаллизация состоит из двух стадий. В жидком состоянии металла его атомы находятся в непрерывном движении. При понижении температуры движение атомов замедляется, они сближаются и группируются в кристаллы. Образуются так называемые центры кристаллизации (первая стадия). Затем идет роет кристаллов вокруг этих центров (вторая стадия). Вначале кристаллы растут свободно. При дальнейшем росте кристаллы отталкиваются, рост одних кристаллов мешает росту соседних, в результате чего образуются неправильной формы группы кристаллов, которые называют зернами.

    Размер зерен существенно влияет на эксплуатационные и технологические, свойства металлов. Крупнозернистый металл имеет низкую сопротивляемость удару, при его обработке резанием возникает трудность в получении малой шероховатости поверхности деталей. Размеры зерен зависят от природы самого металла и условий кристаллизации.

    Методы изучения структуры металла. Исследование структур металлов и сплавов производится с помощью макро- и микроанализа, а также другими способами.

    Методом макроанализа изучается макроструктура, т. е. строение металла, видимое невооруженным глазом или с помощью лупы. Макроструктуру определяют по изломам металла или по макрошлифам.

    Макрошлиф представляет собой образец металла или сплава, одна из сторон которого отшлифована и протравлена кислотой или другим реактивом. Этим методом выявляются крупные дефекты: трещины, усадочные раковины, газовые пузыри, неравномерность распределения примесей в металле и т. д.

    Микроанализ позволяет определить размеры и форму зерен, структурные составляющие, качество термической обработки, выявить микродефекты.

    Микроанализ проводится по микрошлифам с помощью микроскопа (современные металлографические микроскопы дают увеличение до 2000, а электронные — до 25 000).

    Ми крошлиф— это образец металла, имеющий плоскую полированную поверхность, подвергнутую травлению слабым раствором кислоты или щелочи для выявления микроструктуры. Свойства металлов. Свойства металлов обычно подразделяют на физико-химические, механические и технологические. Физико-химические и механические свойства твёрдых тел, в том числе и металлов, вам знакомы из курсов физики и химии. Остановимся на рассмотрении некоторых механических и технологических свойств, важных с точки зрения обработки металлов.

    Под механическими свойствами, как известно, понимают способность металла или сплава сопротивляться воздействию внешних сил. К механическим свойствам относят прочность, вязкость, твердость и др.

    Прочность характеризует свойство металла или сплава в определенных условиях и пределах, не разрушаясь, воспринимать те или иные воздействия внешних сил.

    Важным свойством металла является ударная вязкость — сопротивление материала разрушению при ударной нагрузке.

    Под твердостью понимают свойство материала сопротивляться внедрению в него другого, более твердого тела.

    Механические свойства материалов выражаются через ряд показателей (например, пределы прочности при растяжении, относительное удлинение и сужение и т.д.)

    Пределом прочности при растяжении, или временным сопротивлением разрыву, называется условное напряжение, соответствующее максимальной нагрузке, которую выдерживает образец в процессе испытания до разрушения

    Твердость металлов и сплавов определяют в основном с помощью трех методов, названных по именам их изобретателей: метод Бринелля, метод Роквелла и метод Виккерса. I Измерение твердости по методу Бринелля заключается в том, что с помощью твердомера ТШ в поверхность испытуемого металла вдавливается стальной закаленный шарик диаметром 2,5 5 или 10 мм под действием статической -нагрузки Р. Отношение нагрузки к площади поверхности отпечатка (лунки) дает значение твердости, обозначаемое НВ.

    Измерение твердости по Роквеллу осуществляется с помощью прибора ТК вдавливанием в испытуемый металл шарика диаметром 1,59 мм (1/16 дюйма) или алмазного конуса с углом при вершине 120° (для особо твердых сталей и сплавов) .Показания твердости определяются по индикатору прибора.

    Измерение твердости по Виккерсу производится с помощью прибора ТП вдавливанием в металл алмазной четырехгранной пирамиды с углом при вершине а= 136°. По длине диагонали полученного отпечатка с помощью таблицы находят число твердости HV.

    Применение того или иного метода зависит от твердости испытуемого образца, его толщины или толщины испытуемого слоя. Например, методом Виккерса пользуются для измерения твердости закаленных сталей, материалов деталей толщиной до 0,3 мм и тонких наружных цементированных, азотированных и других поверхностей деталей.

    К основным технологическим свойствам металлов и сплавов

    относятся следующие:

    ковкость—свойство металла подвергаться ковке и другим видам обработки давлением;

    ж и д к о т е к у ч е с т ь — свойство расплавленного металла заполнять литейную форму во всех ее частях и давать плотные отливки точной конфигурации;

    свариваемость — свойство металла давать прочные сварные соединения;

    обрабатываемость реза нием— свойство металлов подвергаться обработке режущими инструментами для придания деталям определенной формы, размеров и шероховатости поверхности.