Проект "химические вещества в архитектуре". Самые удивительные вещества Сколько и какие известны памятники химическим веществам

Проект
Проект "химические вещества в архитектуре". Самые удивительные вещества Сколько и какие известны памятники химическим веществам

Человек всегда стремился отыскать материалы, которые не оставляют никаких шансов своим конкурентам. Издревле учёные искали самые твердые материалы в мире , самые лёгкие и самые тяжелые. Жажда открытий привела к открытию идеального газа и идеально чёрного тела. Представляем вам самые удивительные вещества в мире.

1. Самое черное вещество

Самое чёрное вещество в мире называется Vantablack и состоит из совокупности углеродных нанотрубок (см. углерод и его аллотропные модификации). Проще говоря, материал состоит из бесчисленного множества «волосков», попав в которые, свет отскакивает от одной трубки к другой. Таким образом поглощается около 99,965% светового потока и лишь ничтожная часть отражается обратно наружу.
Открытие Vantablack открывает широкие перспективы применения этого материала в астрономии, электронике и оптике.

2. Самое горючее вещество

Трифторид хлора является самым горючим веществом из когда-либо известных человечеству. Является сильнейшим окислителем и реагирует практически со всеми химическими элементами. Трифторид хлора способен прожечь бетон и легко воспламеняет стекло! Применение трифторида хлора практически невозможно из-за его феноменальной воспламеняемости и невозможности обеспечить безопасность использования.

3. Самое ядовитое вещество

Самый сильный яд — это ботулотоксин. Мы знаем его под названием ботокс, именно так он называется в косметологии, где нашел свое основное применение. Ботулотоксин — это химическое вещество, которое выделяют бактерии Clostridium botulinum. Помимо того, что ботулотоксин — самое ядовитое вещество, так он ещё и обладает самой большой молекулярной массой среди белков. О феноменальной ядовитости вещества говорит тот факт, что достаточно всего 0,00002 мг мин/л ботулотоксина, чтобы на полдня сделать зону поражения смертельно опасной для человека.

4. Самое горячее вещество

Это, так называемый, кварк-глюонная плазма. Вещество было создано с помощью столкновением атомов золота при почти световой скорости. Кварк-глюонная плазма имеет температуру 4 триллиона градусов Цельсия. Для сравнения, этот показатель выше температуры Солнца в 250 000 раз! К сожалению, время жизни вещества ограничено триллионной одной триллионной секунды.

5. Самая едкая кислота

В этой номинации чемпионом становится фторидно-сурьмяная кислота H. Фторидно-сурьмяная кислота в 2×10 16 (двести квинтиллионов) раз более едкая, чем серная кислота. Это очень активное вещество, которое может взорваться при добавлении небольшого количества воды. Испарения этой кислоты смертельно ядовиты.

6. Самое взрывоопасное вещество

Самое взрывоопасное вещество — гептанитрокубан. Он очень дорогой и применяется лишь для научных исследований. А вот чуть менее взрывоопасный октоген успешно применяется в военном деле и в геологии при бурении скважин.

7. Самое радиоактивное вещество

«Полоний-210» — изотоп полония, который не существует в природе, а изготавливается человеком. Используется для создания миниатюрных, но в тоже время, очень мощных источников энергии. Имеет очень короткий период полураспада и поэтому способен вызывать тяжелейшую лучевую болезнь.

8. Самое тяжёлое вещество

Это, конечно же, фуллерит. Его твердость почти в 2 раза выше, чем у натуральных алмазов. Подробнее о фуллерите можно прочитать в нашей статье Самые твердые материалы в мире .

9. Самый сильный магнит

Самый сильный магнит в мире состоит из железа и азота . В настоящее время, широкой общественности недоступны детали об этом веществе, однако уже сейчас известно, что новый супер-магнит на 18% мощнее самых сильных магнитов применяющихся сейчас — неодимовых. Неодимовые магниты изготавливаются из неодима, железа и бора.

10. Самое текучее вещество

Сверхтекучий Гелий II почти не имеет вязкости при температурах близких к абсолютному нулю. Этим свойством обусловлено его уникальное свойство просачиваться и выливаться из сосуда, изготовленного из любого твёрдого материала. Гелий II имеет перспективы использования в качестве идеального термопроводника, в котором не рассеивается тепло.

ХИМИЯ В ЕГИПТЕ В ЭЛЛИНИСТИЧЕСКИЙ ПЕРИОД. ДРЕВНЕЙШИЕ ЛИТЕРАТУРНЫЕ ХИМИЧЕСКИЕ ПАМЯТНИКИ

В IV в. до н. э. Александр Македонский (356–323 гг.) предпринял военные походы и покорил Грецию, Персию и многие страны Азии и Африки. В 322 г. до н. э. он завоевал Египет и в следующем году заложил на берегу Средиземного моря, в дельте Нила, город Александрию. В течение короткого времени, благодаря выгодному географическому положению, Александрия стала крупнейшим торговым и промышленно-ремесленным центром древнего мира и важнейшим портом на Средиземном море. Она стала столицей нового эллинистического Египта.

После внезапной смерти Александра Македонского его громадная империя распалась. В возникших самостоятельных государствах у власти стали виднейшие его соратники. Так, в Египте воцарился Птолемей-Сотэр, ставший родоначальником династии Птолемеев (323–30 гг. до н. э.). Безжалостно эксплуатируя население, Птолемей накопил значительные богатства и, подражая прежним египетским фараонам, завел роскошный двор. В качестве придворного учреждения он основал Александрийскую академию, в которой стали обучаться наукам и искусствам молодые люди разных наций, главным образом греки. Для преподавания в Академию были привлечены видные ученые из Афин и других городов.

При Академии был учрежден музей (Дом муз) с многочисленными естественнонаучными коллекциями и собраниями произведений искусств. Была создана библиотека, состоявшая из греческих рукописных книг, древнеегипетских папирусов и глиняных и восковых табличек с текстами произведений ученых и писателей древности. При преемниках Птолемея-Сотэра продолжалось пополнение музея и библиотеки. Птолемей II - Филадельф - приобрел для библиотеки большое собрание книг, принадлежавших Аристотелю. Многие из этих книг были получены Аристотелем в подарок от Александра Македонского. Был установлен порядок, при котором каждая книга, привозившаяся в Египет, должна была представляться в Академию, где с нее снималась копия. Большое число книг копировалось во многих экземплярах и распространялось среди ученых и любителей наук.

Уже при первых Птолемеях в Александрийской академии сосредоточилось много философов, поэтов и ученых различных специальностей, главным образом математиков. Однако условия Академии как придворного учреждения не способствовали развитию в ней передовых философских идей и учений. Ведущими направлениями в Академии стали реакционные и идеалистические учения «гностицизм» и «неоплатонизм».

Гностицизм - течение религиозно-мистического характера. Гностики занимались вопросами познания (гносис) сущности высшего божественного начала. Они признавали существование «невидимого» мира, населенного бесчисленными бесплотными существами. Описания этого мира полны мистики и символизма. Гностики были ярыми врагами естественнонаучного материализма.

Неоплатонизм, получивший особенно широкое распространение в III и IV вв. н. э. благодаря Плотину (204–270 гг.), также представлял собой философское учение религиозно-мистического характера. Неоплатоники признавали существование души не только у людей и вообще живых существ, но и у тел «мертвой природы». Толкование различных проявлений души и действия на расстоянии духов, заключенных в различных телах, составляло основное содержание философии неоплатоников. Учение неоплатоников стало основой астрологии - искусства предсказания различных событий и судеб людей по положению звезд. Неоплатонизм лег в основу так называемой черной магии - искусства сношений с духами и душами умерших людей путем заклинаний, различных манипуляций, гаданий и т. п.

Учения гностиков и неоплатоников, впитавшие в себя элементы многих религиозных кодексов и догм, частично легли в основу формирования христианской догматики. Несмотря на жалкую роль, которую играла философия, в Александрийской академии получили блестящее развитие такие науки, как математика, механика, физика, астрономия, география и медицина. Причины успехов в развитии этих областей знаний станут понятны, если вспомнить их важное практическое значение прежде всего для военного дела (механика и математика), сельского хозяйства и ирригационных работ (геометрия), мореплавания и торговли (география, астрономия), а также в жизни придворной знати (медицина).

Из крупнейших ученых-математиков Александрийской академии следует назвать Эвклида (умер после 280 г. до н. э.) и Архимеда (287–212 гг. до н. э.), имевших много учеников. Достижения этих великих математиков древности широко известны.

Химия в первое столетие существования Александрийской академии еще не выделилась в самостоятельную область знаний. В Александрии она была важной составной частью «священного тайного искусства» жрецов храмов, в первую очередь храма Сераписа. Значительная часть химических знаний и приемов, особенно касающаяся изготовления искусственного золота и поддельных драгоценных камней, оставалась еще недоступной для широких масс.

Несомненно, что в древнеегипетских храмах доэллинистического периода с давних пор существовали рецептурные сборники с описанием химико-технических операций и приемов производства золота и золотых сплавов, а также всевозможных подделок драгоценных металлов и драгоценных камней. В таких сборниках наряду с химико-техническими рецептами и описаниями содержались секретные сведения по астрономии, астрологии, магии, фармации, медицине, а также по математике и механике. Таким образом, химико-технические и химико-практические сведения составляли лишь раздел естественнонаучных, математических и других знаний, а также всевозможных мистических (магия и астрология) описаний и заклинаний. Все эти сведения в ту эпоху обычно объединялись общим названием «физика» (от греческого - «природа»).

После завоевания Египта Александром Македонским, когда в Александрии и других крупнейших городах страны поселилось множество греков, весь комплекс знаний, накопленных в течение многих веков жрецами храмов Озириса и Изиды, скрестился с греческой философией и ремесленной техникой, в частности с химическими ремеслами. При этом многие технические «секреты» египетских жрецов стали доступны греческим ученым и ремесленникам.

Естественно, что с точки зрения господствующего философского мировоззрения греков в ту эпоху (философия перипатетиков, а затем гностицизм и неоплатонизм) древнеегипетская техника подделки драгоценных металлов и камней рассматривалась как подлинное искусство «превращения» одного вещества в другое. К тому же при невысоком уровне химических знании в ту эпоху далеко не всегда можно было установить подделку путем химического анализа или другим путем.

Заманчивая перспектива быстрого обогащения, ореол тайны, которым были окружены операции «облагораживания» металлов, и, наконец, уверенность в полном соответствии явлений «превращения» веществ, в особенности взаимных превращений металлов, законам природы - все это в сильнейшей степени способствовало быстрому распространению «тайного искусства» египетских жрецов в эллинистическом Египте, а затем и в других странах Средиземноморского бассейна. Уже около начала нашей эры изготовление поддельных драгоценных металлов и драгоценных камней приобрело массовый характер.

Судя по литературным произведениям, дошедшим до нас, способы «превращения» неблагородных металлов в золото и серебро сводились к трем операциям: 1) изменению поверхностной окраски неблагородного металла действием подходящих химикалий или покрытием его тонким слоем благородного металла, придающего «превращаемому» металлу вид золота или серебра; 2) окраска металлов лаками соответствующих цветов и 3) изготовлению сплавов, по внешнему виду похожих на золото или серебро (48).

Из литературных произведений химико-технического содержания эпохи Александрийской академии назовем прежде всего «Лейденский папирус X», относящийся к III в. н. э. (49) Этот документ был найден вместе с другими в одной из фиванских гробниц в 1828 г. Он поступил в Лейденский музей, но долгое время не привлекал внимания исследователей и был прочитан и прокомментирован лишь в 1885 г. Лейденский папирус (на греческом языке) содержит более 100 рецептов, описывающих способы подделки благородных металлов.

В 1906 г. стало известно о существовании другого древнего папируса того же времени. Это так называемый Стокгольмский папирус, попавший в 1830-х годах в библиотеку Академии наук в Стокгольме. В нем оказалось 152 рецепта, из которых 9 относятся к металлам, 73 - к изготовлению поддельных драгоценных камней и жемчуга и 70 - к крашению тканей, преимущественно к получению окраски пурпурового цвета (50).

В некоторых других химических папирусах помимо рецептурных формул имеются вставки, представляющие собой нечто вроде заклинаний. Например, в «Лейденском папирусе V» имеется такая вставка: «Двери неба открыты, двери земли открыты, путь моря открыт, путь рек открыт. Все боги и духи послушались моего духа, дух земли послушался моего духа, дух моря послушался моего духа, дух рек послушался моего духа» (51).

Специальные исследования показали, что оба папируса по содержанию довольно близки более древним произведениям, очевидно распространенным в эллинистическом Египте и дошедшим до нас в списках гораздо более позднего времени. Так, например, известно сочинение на греческом языке, опубликованное впервые Бертло под названием «Физика и мистика» (52) и фигурирующее как сочинение Демокрита из Абдеры. В действительности же, как установлено Дильсом и Липпманом, первоисточиком этого и других подобных произведений является сочинение энциклопедического характера более древнего происхождения, составленное неким Болосом из Мендеса около 200 г. до н. э. на основе данных греческой науки, египетской тайной науки и нескольких древнеперсидских сочинений мистического характера. Очевидно, Болос, желая по каким-то причинам скрыть свое авторство в составлении этой энциклопедии, приписал часть своего труда различным древним философам, в том числе знаменитому атомисту Демокриту. Подобный прием приписывания авторства сочинений, относящихся к области «тайной науки», другим авторам, прежде всего знаменитым философам и ученым, очень часто применялся с самых древних времен вплоть до XVII в. (53) Причины и побуждения такой «передачи авторства» другим людям были различны: в одних случаях подлинные авторы опасались преследований за свои сочинения, в других «псевдоавторство» применялось для рекламы при продаже соответствующего списка сочинения.

В эпоху римского владычества в Египте, в Александрии были распространены некоторые сочинения ремесленно-химического содержания. Химико-технические сведения в этих сочинениях, в отличие от прежних, изложены уже малопонятным языком и сопровождаются туманными высказываниями и заклинаниями. Сочинения эти полны религиозной мистики.

Так, известно несколько безымянных рукописей, в которых авторство сообщаемых тайных сведений приписывается либо богам, либо различным мифическим личностям далекого прошлого. Основателями «священного тайного искусства» изготовления драгоценных металлов, камней и жемчуга считают, в частности, бога Озириса, Тота, или Гермеса, называвшегося «Трисмегистос», т. е. «трижды величайшим», Изиса, Гора, Моисея, а также Демокрита, Клеопатру Египетскую, Марию-еврейку (коптскую) и др. Особенно большие заслуги приписывались мифическому Гермесу Трисмегистосу, по-видимому обоготворенному древнеегипетскому жрецу. В этих же рукописях приводятся легенды о божественном происхождении «тайного искусства» превращения металлов, о существовании будто бы тщательно схороненных в тайниках произведений богов и ангелов, содержащих величайшие «секреты». Приводится, в частности, легенда об «изумрудной таблице» Гермеса, ставшая весьма популярной у средневековых алхимиков. Текст этой мифической таблицы, написанной будто бы на изумрудной пластинке, найденной Александром Македонским в гробнице Гермеса, таков: «Истинно, без обмана, достоверно и совершенно правдиво. То, что внизу, подобно тому, что вверху. И то, что вверху, подобно тому, что внизу, для совершения чудес единого дела. И подобно тому, как все предметы произошли от одного вещества, по мысли одного, так все они произошли от этого вещества путем усыновления. Его отец - Солнце, его мать - Луна. Ветер носил его в своем чреве, Земля - его кормилица. Оно - отец всякого совершенства во вселенной. Если его превратить в землю, его могущество не ослабевает. Отдели землю от огня, тонкое от грубого, осторожно, с большим искусством. Это вещество поднимается от земли к небу и тотчас снова нисходит на землю и собирает силу и верхних и нижних вещей. И ты получишь всемирную славу. И всякий мрак удалится от тебя. Сила его могущественнее всякой силы, потому что она уловит все неуловимое и проникнет во все непроницаемое. Ибо так сотворен мир! Здесь указан источник удивительных применений. Вот почему я был назван Гермесом Трижды величайшим, владеющим тремя разделами всемирной философии. Я сказал здесь все о деле Солнца» (54) (по-видимому, золота).

Легенда о роли Гермеса в основании «священного тайного искусства» получила широкое распространение в VI в., а уже в дальнейшем, в XIII в. и, особенно, в XVI–XVII вв., громкую славу приобрела его «изумрудная таблица». От имени Гермеса «тайное искусство» превращения металлов в средние века получило название «герметическое» искусство.

К VI в. относятся произведения Синезия, комментатора сочинений, приписывавшихся Демокриту (Псевдодемокриту), Стефана Александрийского и Олимпиодора («О священном искусстве») и многих других. Во всех этих произведениях в изобилии содержится мистика, туманная символика, заклинания и т. д. Между прочим, Олимпиодор был одним из первых, кто применил обозначение семи металлов древности знаками планет, употреблявшимися еще в Древнем Египте (55).

Помимо сочинений Псевдодемокрита - Болоса в эпоху Александрийской академии было известно большое сочинение «божественного» 3осимы из Панополиса (около 400 г.). Зосима, вероятно, был близко связан с Александрийской академией, где во II–IV вв. преподавалось «тайное искусство». Сочинение Зосимы дошло до нас не полностью и со значительными искажениями. Оно состоит из 28 книг, в которых рассматриваются различные приемы «тайного искусства», например, вопрос «о фиксации ртути» , о «божественной воде», о священном искусстве изготовления золота и серебра, о четырех телах, о философском камне и т. д. (56).

В сочинении Зосимы, по-видимому, впервые в литературе упоминается название «химия» (некоторые авторы считают, что это название в рукописи сочинения Зосимы является позднейшей вставкой) в понимании «священного тайного искусства». Соответственно древнееврейской легенде («Книга Бытия», гл. 6), Зосима рассказывает, что это искусство было передано людям падшими ангелами, которые после изгнания Адама и Евы из рая сходились с дочерями человеческими и, в награду за их любовь, сообщали им приемы «тайного искусства». Согласно Зосиме, первая книга, в которой были собраны сведения о «тайном искусстве», была написана пророком Хемом (Хамом?), от имени которого и произошло самое название искусства (57). Сочинение Зосимы пользовалось широкой известностью у александрийских, а позднее и у средневековых алхимиков. Широкое распространение тайного искусства превращения металлов, появление огромного количества поддельных монет в обращении стало угрозой торговле. В первые века нашей эры, в эпоху римского владычества в Египте, римские императоры неоднократно пытались запретить занятия «тайным искусством». Так, Диоклетиан около 300 г. в связи с денежной реформой в империи издал указ о сожжении всех книг, содержащих описания изготовления золота и серебра.

С другой стороны, «тайное искусство» и связанные с ним религиозно-мистические обряды, гадания, заклинания, занятия черной магией и т. д. вызвали преследования со стороны христианского духовенства, видевшего в такого рода занятиях угрозу для «чистоты» христианских учений. Преследовались и ученые Александрийской академии, считавшейся главным центром «тайного искусства». Об этом свидетельствует печальная история Александрийской академии, ее университета, музея и библиотеки.

Еще в 47 г. до н. э., при осаде Александрии Юлием Цезарем, сгорел музей Академии, в котором помещалась большая часть библиотеки (около 400 000 томов). Другая часть библиотеки (до 300 000 томов), хранившаяся в храме Сераписа (позднейшее имя бога Озириса, или Юпитера), уцелела. Император Антонин взамен сгоревшей части библиотеки подарил Клеопатре Египетской Пергамскую библиотеку в 200 000 томов. В 385 г. фанатики-христиане во главе с архиепископом Феофилом разрушили храм Сераписа, а в 390 г. погибли книги, хранившиеся в этом храме. В 415 г. по указанию патриарха Кирилла был разгромлен университет Академии, причем были убиты многие профессора и ученые, в том числе знаменитая Гипатия. Наконец, в 640 г. при взятии арабами Александрии погибли остатки библиотеки, и Александрийская академия перестала существовать.

Каковы же итоги развития химического искусства в эпоху Александрийской академии, просуществовавшей почти 1000 лет? Прежде всего, следует отметить значительное расширение химико-технических знаний и ремесленно-химического опыта в эту эпоху. Знания, накопленные древнеегипетскими ремесленниками и жрецами в металлургии, красильном искусстве, фармации и других областях, перешли к грекам, а затем в Рим и к другим народам Средиземноморского побережья. Сам характер ремесел изменился. В Римской республике и Римской империи, так же как и в Александрии, наряду с одиночными ремесленными мастерскими существовали так называемые фабрики, в которых работали десятки и даже сотни ремесленников-рабов. На таких фабриках осваивался, суммировался и совершенствовался опыт отдельных мастеров.

Значительные успехи были достигнуты в области производства различных металлических сплавов, особенно медных. Получили распространение сплавы с различными окраской и оттенками цветов. Была разработана и усовершенствована техника металлических покрытий (золочение, серебрение, меднение, лужение и т. д.), а также техника «окраски» при помощи соответствующих химикатов поверхности драгоценных металлов.

Получило развитие ремесло крашения тканей и других изделий и производство различных красителей. Помимо минеральных и растительных красителей, известных в Древнем Египте и других странах древнего мира, в эту эпоху были введены в практику новые природные красители, особенно красители, дающие пурпуровую окраску. Красители и рецептуры приемов крашения описаны в рецептурных сборниках, составленных в эпоху Александрийской академии и вошедших в европейские сборники позднейшего времени в расширенном виде.

Значительно увеличился ассортимент химикатов, применявшихся ремесленниками в производствах. Большое распространение получили вещества, известные до этого лишь в Египте. В рецептурных сборниках эпохи Александрийской академии упоминаются вещества, относящиеся к различным классам минеральной химии: натрон (сода), поташ, квасцы, купорос, бура, уксус, ярь-медянка, свинцовые белила, сурик, киноварь, сажа, окислы железа, окислы и сульфиды мышьяка, семь металлов древности и многие другие.

Однако наряду с развитием ремесленной практической химии и химической техники, с расширением и усовершенствованием химических знаний в Александрийскую эпоху получила развитие и другая, фактически бесплодная, ветвь химии - «тайное искусство», ставившее своей целью отыскать способы искусственного получения драгоценных металлов и камней. Это «тайное искусство», не выходившее в доэллинистическую эпоху в Египте за стены древних храмов и целиком находившееся в ведении жрецов, нашло множество последователей из различных слоев населения Александрии и других средиземноморских городов. Представители «тайного искусства» уже, как правило, не принадлежали к числу химиков-практиков и презирали ремесло и ремесленников. В основном это были искатели счастья и легкого обогащения.

С течением времени в поисках путей трансмутации (превращения) металлов «тайное искусство» все более и более отрывалось от практики и замыкалось в рамках навязчивой идеи, что будто бы древние философы обладали секретом трансмутации и что этот секрет утрачен или зашифрован в древних рукописных сочинениях и может быть восстановлен при помощи молитв и заклинаний. Этот секрет представляли в виде некоего сверхъестественного средства, в присутствии которого при простом расплавлении неблагородные металлы мгновенно превращаются в настоящее золото. Это средство уже в древности получило различные названия: «философский камень», «красный камень», «панацея» и др. Ему приписывались и чудодейственные свойства всеисцеляющего лекарства, способного возвратить молодость старикам. Не находя реальных путей приготовления философского камня и реализации трансмутации металлов, представители «тайного искусства» либо удовлетворялись освоением простых способов грубой подделки металлов, либо пытались на основе философских учений гностиков и неоплатоников при помощи астрологии, магии, каббалистики, а также заклинаний, вызываний духов, молитв, гаданий и т. п. добиться решения фантастической задачи. При этом, желая скрыть неудачи поисков, приверженцы «тайного искусства» нередко мистифицировали своих единомышленников, утверждая, что будто бы они нашли, наконец, утраченный секрет древних мудрецов. В целях мистификации и скрытия истины они широко пользовались символикой, шифрами, загадочными фигурами, различными, им одним понятными, обозначениями веществ, фантастическими сочетаниями слов и букв для выражения мнимой тайны, каббалистическими сочетаниями цифр и т. д. Все эти приемы приверженцев «тайного искусства» были в дальнейшем усвоены и даже развиты европейскими алхимиками.

Что же касается реальных способов приготовления искусственного золота, о которых можно судить по сочинениям, дошедшим до нас со времени существования Александрийской академии, то они чаще всего сводились к изготовлению золотоподобных сплавов или же сплавов, окрашенных снаружи в золотистый цвет. Приведем описание последовательных операций изготовления искусственного золота:

1. Тетрасомия (от греческого - «четыре» и - «тело») - изготовление исходного сплава из четырех металлов: олова, свинца, меди и железа. По мнению авторов описаний, этот четверной сплав, окрашенный вследствие окисления с поверхности в черный цвет, обладал свойствами земли. При нагревании он плавился, приобретая свойства воды.

2. Аргиропея, или сереброделие (от греческого - «серебро», делаю) - отбеливание продукта тетрасомии путем сплавления с мышьяком и ртутью, в результате чего сплав, как считалось, приобретает свойства серебра.

3. Хризопея (от греческого - «золото») - главная операция - превращение подготовленного серебра в золото действием на сплав, полученный в результате аргиропеи, сернистыми соединениями и «серной водой». Предварительно в сплав добавляли некоторое количество настоящего золота, которое должно было служить «закваской» при превращении.

4. И о з и с (58) («томление», «брожение») - отделка полученного продукта путем окрашивания поверхности готового сплава при помощи травления квасцами или окуривания (томления) в специальном приборе, называвшемся «керотакис» (59).

Впрочем, в литературе того времени приводятся и другие рецепты хризопеи: путем, например, золочения, обработки поверхности металла различными реактивами и т. д.

«Тайное искусство» получения поддельного золота и поддельных драгоценных камней процветало в Александрии, независимо от развития ремесленной практической химии, продолжавшей идти путем прогресса. С течением времени связи «тайного искусства» с практикой, прежде всего с металлургией, все более и более ослаблялись и в первые века нашей эры полностью нарушились.

Из книги Сексуальная жизнь в Древней Греции автора Лихт Ганс

Из книги История Европы с древнейших времён до конца XV века автора Девлетов Олег Усманович

Вопрос 4. Эллинистический период (конец IV– I вв. до н. э.) Молодой правитель был верен клятве, данной отцом, и вскоре начал войну против Персии.Персидская держава, в то время уже довольно слабая, охватывала огромную территорию: нагорье Ирана, большую часть Средней Азии, всю

Из книги Греция и Рим [Эволюция военного искусства на протяжении 12 веков] автора Коннолли Питер

Эллинистический период После смерти Александра, когда его военачальники принялись бороться за власть, изготовление осадных машин достигло небывалых высот. Когда Де-метрий Полиоркет («Осаждатель городов») осадил Саламин на Кипре, он выстроил девятиэтажную башню высотой

Из книги Греция и Рим, энциклопедия военной истории автора Коннолли Питер

Эллинистический период После смерти Александра, когда его военачальники принялись бороться за власть, изготовление осадных машин достигло небывалых высот. Когда Де-метрий Полиоркет («Осаждатель городов») осадил Саламин на Кипре, он выстроил девятиэтажную башню

Из книги Люди, нравы и обычаи Древней Греции и Рима автора Винничук Лидия

ИСПОЛЬЗОВАННЫЕ ЛИТЕРАТУРНЫЕ ПАМЯТНИКИ В РУССКИХ ПЕРЕВОДАХ Алкман. Парфенеи / Пер. В. В. Вересаева // Эллинские поэты. М., 1963.Аппиан. Гражданские войны / Пер. под ред. С. А. Жебелева и О. О. Крюгера. Л., 1935.Апулей. Апология. Метаморфозы. Флориды / Пер. М. А. Кузмина и С. П. Маркиша. М.,

Из книги В пучине Русской Смуты. Невыученные уроки истории автора Зарезин Максим Игоревич

Документы. Летописи. Литературные памятники. Мемуары Акты Западной России. Т. IV. СПб., 1851.Акты подмосковных ополчений и земского собора 1611–1613.М., 1911.Акты, собранные в библиотеках и архивах Российской империи археографической экспедицией Императорской Академии наук. ААЭ.

Из книги Еврейские хроники XVII столетия. Эпоха «хмельничины» автора Боровой Саул Яковлевич

Г. Хронисты (их классовое лицо в свете биографических данных) и еврейские хроники как литературные памятники С каких социальных позиций освещаются события середины XVII в. в изучаемых нами «еврейских хрониках»?Мы располагаем чрезвычайно скудным биографическим

Из книги Древняя Русь. IV–XII вв. автора Коллектив авторов

Развитие грамоты и литературные памятники БЫЛИ?НЫ – устные эпические песни русского народа о своем прошлом, отражавшие в основном историческую действительность кон. 10 – нач. 17 вв.Термин «былины» был введен в 30–40-х гг. 19 в. собирателем фольклора И. П. Сахаровым на основе

автора Филип Ян

IV. Кельтские языки и древнейшие литературные памятники. Гэльско–гойдельские и галльские диалекты В языке кельтов можно различить две главных ветви: Q–кельтскую и Р–кельтскую. Первую группу составляют гэльские языки (ирландцы и шотландцы), в которых индоевропейское кw

Из книги Кельтская цивилизация и её наследие [ёфицировано] автора Филип Ян

Древнейшие памятники ирландской письменности Древнейшими памятниками ирландского языка считаются огамические надписи V-VI веков. Их алфавит состоит из точек и чёрточек (линий) и предполагает хотя бы частичное знание латинского языка. Это письмо применялось главным

Из книги Дети Пятого Солнца [СИ] автора Андриенко Владимир Александрович

Глава 9 Период Древнего царства в Египте и новые загадки "Сфинкс на много тысяч лет старше, чем думают археологи, и что он, в частности, появился на много тысяч лет раньше додинастического Египта, означает, что некогда, в далеком-далеком прошлом, должна была существовать

автора

3.6. ЛИВИЙСКИЙ ПЕРИОД В ЕГИПТЕ После падения Нового царства страна разделилась на два княжества: на юге, в Фивах, правили верховные жрецы, потомки Херихора, на севере же власть постепенно оказалась в руках ливийцев. Воинственные обитатели пустыни, ливийцы, издавна служили

Из книги Война и общество. Факторный анализ исторического процесса. История Востока автора Нефедов Сергей Александрович

4.4. САИССКИЙ ПЕРИОД В ЕГИПТЕ Ассирийское нашествие было частью большой волны ассирийских завоеваний, вызванных освоением металлургии железа и созданием вооруженной железными мечами регулярной армии. До ассирийского завоевания Египет жил в бронзовом веке; после

Из книги Война и общество. Факторный анализ исторического процесса. История Востока автора Нефедов Сергей Александрович

5.3. ПЕРСИДСКИЙ ПЕРИОД В ЕГИПТЕ После подавления антиперсидских восстаний в 450-х гг. разоренный и опустошенный Египет успокоился почти на полвека. Персы перестали считаться с египетской знатью и управляли Египтом как завоеванной провинцией, подвергая страну беспощадной

автора

II. АЛХИМИЧЕСКИЙ ПЕРИОД (ХИМИЯ В СРЕДНИЕ ВЕКА) ОБЩИЕ УСЛОВИЯ РАЗВИТИЯ НАУКИ И ТЕХНИКИ В СРЕДНИЕ ВЕКА Период средневековья обычно определяется хронологическими границами от III–IV в. до XVII в. Этот период характеризуется господством в большинстве стран феодального

Из книги Очерк общей истории химии [От древнейших времен до начала XIX в.] автора Фигуровский Николай Александрович

III. ПЕРИОД ТЕХНИЧЕСКОЙ ХИМИИ И ИАТРОХИМИИ (ХИМИЯ В ЭПОХУ ВОЗРОЖДЕНИЯ) ЭПОХА ВОЗРОЖДЕНИЯ В ЕВРОПЕ Развитие ремесел и торговли, возвышение роли городов, а также политические события в Западной Европе в XII и XIII вв. повлекли за собой значительные перемены во всем укладе жизни

"Голубые кладовые" океанов и морей хранят практически неисчерпаемые запасы многих химических элементов. Так, в одном кубическом метре воды Мирового океана содержится в среднем около четырех килограммов магния. Всего же в водах нашей планеты растворено свыше 6·10 16 тонн этого элемента.

Чтобы показать, сколь грандиозна эта величина, приведем следующий пример. С начала нового летоисчисления, человечество прожило лишь немногим более 60 миллиардов (т. е. 6·10 10) секунд. Это значит, что если бы с первых же дней нашей эры люди начали добывать магний из морской воды, то для того, чтобы к настоящему времени исчерпать все водные запасы этого элемента, пришлось бы каждую секунду извлекать по миллиону тонн магния!

Как видите, Нептун может быть спокоен за свои богатства.

Сколько на земле никеля?

В земной коре содержится приблизительно 10 15 тонн никеля. Много ли это? Хватит ли такого количества никеля, чтобы, допустим, никелировать всю нашу планету (включая поверхность Мирового океана)?

Несложный расчет показывает, что не только хватит, но еще и останется примерно на… 20 тысяч таких же "шариков".

Литые "цари"

Кому не известны шедевры литейного искусства, находящиеся на территории московского Кремля: "царь-колокол" и "царь-пушка". А вот о других литых "царях" знают, должно быть, немногие.

Более тысячи лет назад в Китае был отлит чугунный "царь-лев" высотой около шести метров и весом почти 100 тонн. Между ног этого громадного изваяния могла проехать телега с лошадьми.

Одним из наиболее древних "предков" московского "царь-колокола" считается корейский 48-тонный колокол, отлитый еще в 770 году. Звук его необычайно красив. По преданию, дочь мастера, чтобы избавить отца от многочисленных неудач при выплавке металла, бросилась в расплавленный металл, и в нем застыл ее предсмертный крик.

В музее истории народов Узбекистана недавно появился новый экспонат - огромный чугунный котел, обнаруженный при раскопках кургана вблизи Ташкента. Диаметр этого котла, отлитого древними умельцами, около полутора метров, вес - полтонны. Видимо, "царь-котел" обслуживал в давние времена целое войско: из него можно было накормить сразу почти пять тысяч человек.

Уникальная отливка массой 600 тонн - чугунный шабот (основание) для самого мощного в то время молота - изготовлена в России в 1875 году. Чтобы отлить этот шабот-гигант на Мотовилихинском заводе в Перми построили огромный литейный цех. Двадцать вагранок в течение 120 часов непрерывно плавили металл. Три месяца остывал шабот, затем был вынут из формы и с помощью только одних рычагов и блоков передвинут к месту расположения молота.

Стальному мосту - 200 лет

В Англии есть город Айронбридж, что в переводе на русский означает "Стальной мост". Своим названием город обязан стальному мосту через реку Северн, который был сооружен двести лет назад. Этот мост - первенец сталелитейной промышленности не только Англии, но и всего мира. В Айронбридже есть и другие достопримечательности британской промышленности прошлого. В специализированном музее собрано немало экспонатов по истории техники, демонстрирующих успехи английской металлургии XVIII и XIX веков.

Задолго до питекантропов?

Согласно современным представлениям, человек познакомился с металлами (медью, золотом, железом) всего несколько тысячелетий назад. А прежде на нашей планете в течение почти двух миллионов лет в качестве основного материала для изготовления орудий труда и оружия безраздельно господствовал камень.

Однако историки сталкиваются иногда с упоминанием об удивительных фактах, которые (если только они достоверны!) говорят о том, что у нашей цивилизации, возможно, были предшественницы, достигшие высокого уровня материальной культуры.

В литературе, например, встречается сообщение, что якобы в XVI веке испанцы, ступившие на земли Южной Америки, нашли в серебряных рудниках Перу железный гвоздь длиной около 20 сантиметров. Эта находка вряд ли вызвала бы интерес, если бы не одно обстоятельство: большая часть гвоздя была плотно зацементирована в куске каменной породы, а это могло означать, что он пролежал в недрах земли много десятков тысячелетий. Одно время необычный гвоздь будто бы хранился в кабинете вице-короля Перу Франциско де Толедо, который обычно показывал его своим гостям.

Известны упоминания и о других подобных находках. Так, в Австралии в угольных пластах, относящихся к третичному периоду, был обнаружен железный метеорит со следами обработки. Но кто обрабатывал его в третичном периоде, удаленном от нашего времени на десятки миллионов лет? Ведь даже такие древние ископаемые предки человека, как питекантропы, жили гораздо позже - всего каких-нибудь 500 тысяч лет назад.

О металлическом предмете, найденном в толще каменного угля в шахтах Шотландии, писал журнал "Сообщения Шотландского общества древней истории". Еще одна подобная находка также имеет "шахтерское" происхождение: речь идет о золотой цепочке, обнаруженной якобы в 1891 году в каменноугольных пластах. "Замуровать" ее в кусок угля способна только сама природа, а произойти это могло в те далекие времена, когда шло образование каменного угля.

Где они, эти предметы - гвоздь, метеорит, цепочка? Ведь современные методы анализа материалов позволили бы хоть в какой-то степени пролить свет на их природу и возраст, а значит, раскрыть их тайну.

К сожалению, этого сегодня никто не знает. Да и были ли они на самом деле?

Сплав для эталонов

14 июля 1789 года восставший народ Франции штурмом взял Бастилию - началась Великая французская революция. Наряду со многими декретами и постановлениями, носившими политический, социальный, экономический характер, революционное правительство приняло решение ввести четкую метрическую систему мер. По предложению комиссии, в которую вошли авторитетные ученые, в качестве единицы длины - метра - была принята одна десятимиллионная часть четверти длины парижского географического меридиана. В течение пяти лет крупнейшие французские специалисты в области астрономии и геодезии скрупулезно измеряли дугу меридиана от Дюнкерка до Барселоны. В 1797 году расчеты были завершены, а спустя два года был изготовлен первый эталон метра - платиновая линейка, получившая название "метр архива", или "архивный метр". За единицу массы - килограмм - приняли массу одного кубического дециметра воды (при 4 °C), взятой из Сены. Эталоном килограмма стала платиновая цилиндрическая гиря.

С годами, однако, выяснилось, что естественные прототипы этих эталонов - парижский меридиан и воды из Сены - не очень удобны для воспроизведения, да и к тому же они не отличаются примерным постоянством. Такие "грехи" ученые-метрологи сочли непростительными. В 1872 году Международная метрическая комиссия решила отказаться от услуг природного прототипа длины: эту почетную роль доверили "архивному метру", по которому изготовили 31 эталон в виде брусков, но уже не из чистой платины, а из сплава ее с иридием (10 %). Через 17 лет аналогичная участь постигла и воду из Сены: прототипом килограмма была утверждена гиря, выполненная из того же платиноиридиевого сплава, а международными эталонами стали 40 ее точных копий.

За прошедшее столетие "в царстве мер и весов" произошли некоторые изменения: вынужден был уйти в отставку "архивный метр" (эталоном метра стала длина, равная 1650763,73 длины волны оранжевого излучения изотопа криптона 86 Kr). Но "самый главный в мире" килограмм из сплава платины с иридием по-прежнему остается в строю.

Индий "пробивает" туман

Редкий металл индий сыграл немаловажную роль в… защите Лондона от массированных налетов немецкой авиации во время второй мировой войны. Благодаря чрезвычайно высокой отражательной способности индия изготовленные из него зеркала позволяли прожекторам противовоздушной обороны в поисках воздушных пиратов легко "пробивать" мощными лучами плотный туман, частенько окутывающий британские острова. Поскольку индий принадлежит к легкоплавким металлам, во время работы прожектора зеркало постоянно нуждалось в охлаждении, однако английское военное ведомство охотно шло на дополнительные расходы, с удовлетворением подсчитывая число сбитых вражеских самолетов.

Сорок лет спустя

Весной 1942 года из Мурманска в сопровождении конвоя вышел английский крейсер "Эдинбург", на борту которого находилось более пяти тонн золота - плата СССР союзникам за военные поставки.

Однако в порт назначения крейсер не пришел: он был атакован фашистскими подводными лодками и миноносцами, которые нанесли ему серьезные повреждения. И хотя крейсер еще мог оставаться на плаву, командование английского конвоя приняло решение потопить судно, чтобы ценнейший груз не достался врагу.

Спустя несколько лет после окончания войны родилась идея - извлечь золото из чрева затонувшего корабля. Но понадобилось еще не одно десятилетие, прежде чем идея воплотилась в жизнь.

В апреле 1981 года было достигнуто соглашение между СССР и Великобританией о подъеме золотого груза и уже вскоре английская фирма, с которой был заключен соответствующий контракт, приступила к работе. К месту гибели "Эдинбурга" прибыло специально оборудованное спасательное судно "Стефанитурм".

Для борьбы с морской стихией фирма привлекла опытных и отважных водолазов разных стран. Трудности заключались не только в том, что золото покоилось под 260-метровой толщей воды и слоем ила, но и в том, что рядом с ним находился отсек с боеприпасами, готовыми в любой момент взорваться.

Шли дни. Сменяя друг друга, водолазы шаг за шагом расчищали путь к золотым слиткам, и, наконец, поздно вечером 16 сентября водолаз из Зимбабве Джон Розе поднял на поверхность тяжелую черную болванку.

Когда его коллеги оттерли бензином грязь и мазут, покрывавшие поверхность металла, все увидели долгожданный желтый блеск золота. Лиха беда - начало! Подъем продолжался 20 дней, пока разбушевавшееся Баренцево море не заставило водолазов прекратить работу. Всего из пучины удалось извлечь 431 слиток золота высшей пробы (9999) весом почти по 12 килограмм. Каждый из них по современному курсу оценивается в 100 тысяч фунтов стерлингов. Но 34 слитка еще остались на дне ждать своего часа.

Все поднятое с "Эдинбурга" золото было доставлено в Мурманск. Здесь его тщательно взвесили, "оприходовали" и затем поделили в соответствии с соглашением: часть была передана в качестве вознаграждения фирме "добытчице", а остальное золото разделили между советской и британской сторонами в соотношении два к одному.

Сокровища в пучине

В конце второй мировой войны в Восточно-Китайском море американская подводная лодка потопила японское судно "Ава мару". Это судно, замаскированное под плавучий госпиталь, на самом деле выполняло ответственную миссию по перевозке ценностей, награбленных в странах Восточной и Юго-Восточной Азии. На его борту, в частности, находилось 12 тонн платины, большое количество золота, в том числе 16 тонн антикварных золотых монет, 150 тысяч каратов необработанных алмазов, около 5 тысяч тонн редких металлов.

Ушедшие в пучину богатства вот уже почти четыре десятилетия не дают покоя многим искателям сокровищ. При поддержке японского правительства недавно была организована экспедиция, которая должна поднять судно, "начиненное" драгоценными металлами. Однако задача осложняется тем, что местонахождение "Ава мару" до сих пор не установлено. Правда, в печати проскальзывают сообщения о том, что японцев опередили китайцы, которые, якобы, обнаружили судно и уже приступили к "очистке" морского дна.

Нефтяная "руда"

На северо-восточном побережье Каспийского моря есть полуостров Бузачи. Надавно здесь началась промышленная добыча нефти. Само по себе это событие не вызвало бы большого резонанса, если бы не оказалось, что бузачинская нефть характеризуется высоким содержанием… ванадия.

Сейчас ученые Института химии, нефти и природных солей, а также Института металлургии и обогащения АН КазахскойССР разрабатывают эффективную технологию извлечения ценного металла из нефтяной "руды".

Ванадий из асцидий

Некоторые морские растения и животные - голотурии, асцидий, морские ежи - "коллекционируют" ванадий, извлекая его из воды каким-то неведомым человеку способом. Одни ученые полагают, что ванадий, присутствующий в живых организмах этой группы, выполняет те же функции, что железо в крови человека и высших животных, т. е. помогает впитывать кислород, или, образно говоря, "дышать". Другие ученые считают, что ванадий необходим обитателям морского дна не для дыхания, а для питания. Кто из этих ученых прав, покажут дальнейшие исследования. Пока же удалось установить, что в крови голотурий содержится до 10 % ванадия, а у отдельных разновидностей асцидий концентрация этого элемента в крови в миллиарды раз превышает содержание его в морской воде. Настоящие "копилки" ванадия!

Ученые заинтересовались возможностью извлекать ванадий из этих "копилок". В Японии, например, целые километры морских берегов занимают плантации асцидий. Эти животные очень плодовиты: с одного квадратного метра голубых плантаций снимают до 150 килограммов асцидий. После сбора урожая живую ванадиевую "руду" отправляют в специальные лаборатории, где из нее получают нужный промышленности металл. В печати было сообщение о том, что японские металлурги уже выплавили сталь, которая легирована ванадием, "добытым" из асцидий.

Огурцы, "фаршированные" железом

Биологи все чаще обнаруживают, что в живых организмах могут протекать такие процессы, для которых обычно требуются высокие температуры или давления. Так, недавно внимание ученых обратили на себя морские огурцы - представители древнего рода, существующего уже 50 миллионов лет. Оказалось, что в студенистом теле этих животных длиной до 20 сантиметров, обитающих обычно в иле на дне морей и океанов, прямо под кожей накапливается обыкновенное железо в виде крохотных шариков (диаметром не более 0,002 миллиметра). До сих пор неясно, как морским огурцам удается "добывать" это железо и для чего им нужна такая "начинка". Серия экспериментов с изотопами железа, возможно, даст ответ на эти вопросы.

"Усы" входят в моду

С тех пор как каменный век сдал свои полномочия эпохе меди и главенствующее положение среди материалов, используемых человеком, занял металл, люди постоянно искали пути повышения его прочности. В середине XX века перед учеными встали проблемы освоения космических пространств, покорения океанских глубин, овладения энергией атомного ядра, и для успешного решения их понадобились новые конструкционные материалы," в том числе сверхпрочные металлы.

Незадолго до этого физики расчетным путем определили максимально возможную прочность веществ: она оказалась в десятки раз больше реально достигнутой. Каким же образом можно приблизить прочностные характеристики металлов к теоретическим пределам?

Ответ, как часто случалось в истории науки, пришел совсем неожиданно. Еще во время второй мировой войны было зафиксировано немало случаев выхода из строя различных электронных устройств, конденсаторов, морских телефонных кабелей. Вскоре удалось установить причину аварий: виновниками их были мельчайшие (диаметром один - два микрона) кристаллики олова или кадмия в форме иголок и волокон, которые вырастали иногда на поверхности стальных деталей, покрытых слоем этих металлов. Чтобы успешно бороться с нитевидными кристаллами, или "усами" (как назвали вредную металлическую "растительность"), нужно было их тщательно изучить. В лабораториях различных стран были выращены нитевидные кристаллы сотен металлов и соединений. Они стали объектом многочисленных исследований, в результате которых выяснилось (поистине, нет худа без добра), что "усы" обладают колоссальной прочностью, близкой к теоретической. Удивительная прочность нитевидных кристаллов объясняется совершенством их структуры, которая, в свою очередь, обусловлена их миниатюрными размерами. Чем меньше кристалл, тем менее вероятно присутствие в нем различных дефектов - внутренних и внешних. Так, если поверхность обычных металлов, даже отполированная, при сильном увеличении напоминает хорошо вспаханное поле, то поверхность нитевидных кристаллов при тех же условиях выглядит практически ровной (у некоторых из них не обнаружена шероховатость даже при увеличении в 40 000 раз).

С точки зрения конструктора, вполне уместно сравнение "усов" с обыкновенной паутиной, которую по отношению прочности к массе или длине можно считать "рекордсменом" среди всех природных и синтетических материалов.

Свинец и вечные снега

В последние время внимание ученых приковано к проблемам защиты окружающей среды от промышленных загрязнений. Многочисленные исследования свидетельствуют о том, что не только в индустриальных районах, но и вдали от них атмосфера, почва, деревья содержат во много раз больше таких токсичных элементов, как свинец и ртуть.


Любопытны данные, полученные при анализе гренландского фирна (плотного снега). Пробы фирна брались из разных горизонтов, соответствующих тому или иному историческому периоду. В образцах, датированных 800 годом до н. э., на каждый килограмм фирна приходится не более 0,000 000 4 миллиграмма свинца (эта цифра принята за уровень естественного загрязнения, главный источник которого - вулканические извержения). Образцы, относящиеся к середине XVIII века (начало промышленной революции), содержали его уже в 25 раз больше. В дальнейшем же началось настоящее "нашествие" свинца на Гренландию: содержание этого элемента в пробах, взятых с верхних горизонтов, т. е. соответствующих нашему времени, в 500 раз превосходит естественный уровень.

Еще богаче свинцом вечные снега европейских горных массивов. Так, содержание его в фирне одного из ледников Высоких Татр за последние 100 лет возросло примерно в 15 раз. К сожалению, более ранние образцы фирна не были подвергнуты анализу. Если же исходить из уровня естественной концентрации, то оказывается, что в Высоких Татрах, находящихся рядом с промышленными районами, этот уровень превышен почти в 200 тысяч раз!

Дубы и свинец

Сравнительно недавно объектом исследования шведских ученых стали многовековые дубы, растущие в одном из парков в центре Стокгольма. Оказалось, что содержание свинца в деревьях, возраст которых достигает 400 лет, в последние десятилетия резко увеличилось вместе с ростом интенсивности автомобильного движения. Так, если в прошлом веке в древесине дубов содержалось всего 0,000 001 % свинца, то к середине XX века свинцовый "запас" удвоился, а к концу 70-х годов возрос уже примерно в 10 раз. Особенно богата этим элементом та сторона деревьев, которая обращена к автомобильным дорогам и, следовательно, более подвержена воздействию выхлопных газов.

Повезло ли Рейну?

Кое в чем Рейну повезло: он оказался единственной на нашей планете рекой, в честь которой назван химический элемент - рений. Но зато другие химические элементы доставляют этой реке немало бед. Недавно в Дюссельдорфе состоялся международный семинар, или "консилиум по Рейну", как назвала его западная печать. Участники консилиума поставили единодушный диагноз: "Река находится при смерти".

Дело в том, что берега Рейна густо "заселены" заводами и фабриками, в том числе химическими, которые щедро снабжают реку своими сточными водами. Неплохо помогают им в этом многочисленные канализационные "притоки". По данным западногерманских ученых, каждый час в рейнские воды поступает 1250 тонн различных солей - целый железнодорожный состав! Ежегодно река "обогащается" 3150 тоннами хрома, 1520 тоннами меди, 12300 тоннами цинка, 70 тоннами окиси серебра и сотнями тонн других примесей. Стоит ли удивляться, что Рейн часто называют теперь "сточной канавой" и даже "ночным горшком индустриальной Европы". А еще говорят, что Рейну повезло…


Круговорот металлов

Исследования американских физиков показали, что даже в таких районах, где нет промышленных предприятий и оживленного автомобильного движения, а следовательно, источников загрязнения атмосферы, в ней присутствуют микроскопические количества тяжелых цветных металлов.

Откуда же они берутся?

Ученые полагают, что подземный рудный пласт Земли, содержащий эти металлы, постепенно испаряется. Известно, что некоторые вещества в определенных условиях могут превращаться в пар прямо из твердого состояния, минуя жидкое. Хотя процесс протекает чрезвычайно медленно и в очень малых масштабах, какому-то количеству "беглых" атомов все же удается достичь атмосферы. Однако задержаться здесь им не суждено: дожди и снега постоянно очищают воздух, возвращая испарившиеся металлы в покинутую ими землю.

Алюминий сменит бронзу

С древних времен медь и бронза пришлись по душе ваятелям и чеканщикам. Уже в V веке до н. э. люди научились отливать бронзовые статуи. Некоторые из них отличались гигантскими размерами. В начале III века до н. э. был создан, например, Колосс Родосский - достопримечательность древнего порта Родоса на побережье Эгейского моря. Статуя бога Солнца Гелиоса, на 32 метра возвышавшаяся у входа во внутреннюю гавань порта, считалась одним из семи чудес света.

К сожалению, грандиозное творение древнего скульптора Хароса просуществовало лишь немногим более полувека: во время землетрясения статуя разрушилась и была затем продана сирийцам как металлолом.

Поговаривают, будто бы власти острова Родос, чтобы привлечь побольше туристов, намерены по сохранившимся чертежам и описаниям восстановить в своей гавани это чудо света. Правда, воскресший Колосс Родосский будет выполнен уже не из бронзы, а из алюминия. По проекту внутри головы возрожденного чуда света намечено разместить… пивной бар.

"Кипяченая" руда

Не так давно французские ученые, проводя подводные исследования в Красном море, обнаружили недалеко от берегов Судана своеобразную яму глубиной более 2000 метров, причем вода на этой глубине оказалась очень горячей.

Исследователи опустились в провал на батискафе "Сиана", однако вскоре им пришлось возвратиться, поскольку стальные стенки батискафа быстро нагрелись до 43 °C. Пробы воды, взятые учеными, показали, что яма заполнена… горячей жидкой "рудой": содержание в воде хрома, железа, золота, марганца и многих других металлов оказалось необычайно высоким.

Отчего "потела" гора

С давних пор жители Тувы заметили, что на каменных откосах одной из гор время от времени выступали капельки блестящей жидкости. Не случайно гору назвали Терлиг-Хая, что в переводе с тувинского означает "потная скала". Как установили геологи, "виновата" в этом ртуть, которая содержится в горных породах, слагающих Терлиг-Хая. Теперь у подножья горы работники комбината "Тувакобальт" ведут разведку и добычу "серебряной воды".

Находка на Камчатке

На Камчатке есть озеро Ушки. Несколько десятилетий назад на его берегу были найдены четыре металлических кружка - древние монеты. Две монеты плохо сохранились, и ученые-нумизматы ленинградского Эрмитажа смогли лишь установить их восточное происхождение. Зато два других медных кружка рассказали специалистам многое. Они были отчеканены в древнегреческом городе Пантикапее, стоявшем на берегу пролива, который назывался Боспором Киммерийским (в районе теперешней Керчи).

Любопытно, что одну из этих монет можно с полным основанием считать современницей Архимеда и Ганнибала: ученые датировали ее III веком до нашей эры. Вторая монета оказалась "помоложе" - она изготовлена в 17 году нашей эры, когда Пантикапей стал столицей Боспорского царства. На ее лицевой стороне отчеканено изображение царя Рискупорида Первого, а на оборотной - профиль римского императора, вероятнее всего Тиберия, правившего в 14–37 годах нашей эры. Совместное "проживание" на монете сразу двух царственных особ объяснялось тем, что боспорские цари носили титул "Друг цезарей и друг римлян", и поэтому на своих деньгах помещали изображения римских императоров.

Когда и какими путями добрались маленькие медные странницы от берегов Черного моря до глубинки Камчатского полуострова? Но древние монеты хранят молчание.

Грабеж не удался

Успенский собор - красивейшее сооружение Московского Кремля. Интерьер собора освещают несколько люстр, самая большая из которых изготовлена из чистого серебра. Во время войны 1812 года этот драгоценный металл был награблен наполеоновскими солдатами, но "по техническим причинам" вывезти его из России не удалось. Серебро отбили у врага, и в память о победе русские мастера изготовили эту уникальную люстру, состоящую из нескольких сот деталей, украшенных разнообразным орнаментом.

"Как все это музыкально!"

Во время путешествия на яхте по рекам Европы летом 1905 года великий французский композитор Морис Равель посетил крупный завод, расположенный на берегу Рейна. Увиденное там буквально потрясло композитора. В одном из своих писем он рассказывает: "То, что я видел вчера, врезалось мне в память и сохранится навсегда. Это гигантский литейный завод, на котором круглые сутки работает 24 000 человек. Как передать Вам впечатление от этого царства металла, этих пылающих храмов огня, от этой чудесной симфонии свистков, шума приводных ремней, грохота молотов, которые обрушиваются на вас со всех сторон… Как все это музыкально! Непременно использую!.." Свой замысел композитор воплотил в жизнь лишь спустя почти четверть века. В 1928 году он написал музыку для небольшого балета "Болеро", ставшего самым значительным произведением Равеля. В музыке явственно слышатся индустриальные ритмы - более четырех тысяч ударов барабана за 17 минут звучания. Поистине симфония металла!

Титан для Акрополя

Если бы древним грекам был известен металл титан, то вполне вероятно, что они использовали бы его в качестве строительного материала при сооружении зданий знаменитого афинского Акрополя. Но, к сожалению, зодчие древности не располагали этим "вечным металлом". Их замечательные творения оказались подвержены губительному воздействию столетий. Время безжалостно разрушало памятники Эллинской культуры.

В начале нашего века заметно состарившийся афинский Акрополь реконструировали: отдельные элементы зданий были скреплены стальной арматурой. Но прошли десятилетия, сталь кое-где оказалась съедена ржавчиной, многие мраморные плиты осели и потрескались. Чтобы приостановить разрушение Акрополя, решено было заменить стальные крепления титановыми, которым коррозия не страшна, поскольку титан на воздухе практически не окисляется. Для этого Греция недавно закупила в Японии крупную партию "вечного металла".

Кто-то теряет, а кто-то находит

Вряд ли найдется хоть один человек, который за свою жизнь ничего не потерял. По данным британского казначейства, англичане ежегодно теряют одних только золотых и серебряных украшений на два миллиона фунтов стерлингов, да примерно 150 миллионов монет общей стоимостью почти три миллиона фунтов стерлингов. Раз так много теряется, значит, можно много и найти. Вот почему в последнее время на британских островах появилось немало "искателей счастья". На помощь им пришла современная техника: в продажу поступили специальные устройства типа миноискателя, предназначенные для поиска мелких металлических предметов в густой траве, в зарослях кустарника и даже под слоем грунта. За право "прощупать почву" Министерство внутренних дел Англии взимает с каждого желающего (а таковых в стране около 100 тысяч) налог в размере 1,2 фунта стерлингов. Кое-кому удалось, видимо, оправдать эти расходы; несколько раз в печати появлялись сообщения о том, что найдены древние золотые монеты, стоимость которых на нумизматическом рынке весьма велика.

Волосы и мысли

В последние годы вошли в моду всевозможные тесты для определения интеллектуальных способностей человека. Однако, как полагает некий американский профессор, можно вполне обойтись без тестов, заменив их анализом волос обследуемого индивидуума. Проанализировав более 800 разномастных локонов и прядей, ученый выявил четкую, по его мнению, взаимосвязь между умственным развитием и химическим составом волос. В частности, он утверждает, что в волосах мыслящих людей содержится больше цинка и меди, чем в растительности на головах их умственно отсталых собратьев.

Заслуживает ли внимание эта гипотеза? Видимо, утвердительный ответ можно будет дать лишь в том случае, если содержание указанных элементов в шевелюре автора гипотезы окажется на достаточно высоком уровне.

Сахар с молибденом

Как известно, многие химические элементы необходимы для нормального функционирования живых и растительных организмов. Обычно микроэлементы (их называют так, поскольку требуются они в микродозах) поступают в организм с овощами, фруктами и другой пищей. Недавно Киевская кондитерская фабрика начала выпускать необычный вид сладкой продукции - сахар, в который добавлены нужные человеку микроэлементы. Новый сахар содержит марганец, медь, кобальт, хром, ванадий, титан, цинк, алюминий, литий, молибден, разумеется, в микроскопических количествах.

Вы еще не пробовали сахар с молибденом?

Драгоценная бронза

Как известно, бронза никогда не считалась драгоценным металлом. Однако фирма "Паркер" намеревается изготовить из этого широко распространенного сплава перья небольшой партии сувенирных авторучек (всего пять тысяч штук), которые будут продаваться по баснословной цене - 100 фунтов стерлингов. Какие же основания у руководителей фирмы надеяться на успешную реализацию столь дорогих сувениров?

Дело в том, что материалом для перьев послужит бронза, из которой были сделаны части корабельной оснастки знаменитого английского трансатлантического суперлайнера "Куин Элизабет", построенного в 1940 году. Летом 1944 года "Куин Элизабет", ставшая в годы войны транспортным судном, установила своеобразный рекорд, переправив через океан за один рейс 15 200 военнослужащих - самое большое количество людей за всю историю мореплавания. Судьба не была благосклонной к этому крупнейшему в истории мирового флота пассажирскому судну. Бурное развитие авиации после второй мировой войны привело к тому, что в 60-х годах "Куин Элизабет" осталась практически без пассажиров: большинство отдало предпочтение стремительному полету над Атлантическим океаном. Роскошный лайнер стал приносить убытки и был продан в США, где его предполагали поставить на прикол, оборудовав на нем фешенебельные рестораны, экзотические бары, игорные залы. Но из этой затеи ничего не вышло, и "Куин Элизабет", проданная с аукциона, оказалась в Гонконге. Здесь были дописаны последние печальные страницы биографии уникального судна-гиганта. В 1972 году на нем возник пожар, и гордость английских судостроителей превратилась в груду металлолома.

Тогда-то у фирмы "Паркер" и родилась заманчивая идея.

Необычная медаль

Громадные участки океанского дна покрыты железо-марганцевыми конкрециями. Как полагают специалисты, не за горами уже то время, когда начнется промышленная добыча подводных руд. Пока же ведутся эксперименты по разработке технологии получения железа и марганца из конкреций. Уже есть и первые результаты. Ряду ученых, внесших весомый вклад в освоение мирового океана, была вручена необычная памятная медаль: материалом для нее послужило железо, выплавленное из железо-марганцевых конкреций, которые были подняты с океанского дна на глубине около пяти километров.

Топонимика помогает геологам

Топонимика (от греческих слов "топос" - место, местность, и "онома" - имя) - наука о происхождении и развитии географических названий. Часто местность получала имя благодаря каким-то характерным для нее признакам. Вот почему незадолго до войны геологи заинтересовались названиями некоторых участков одного из Кавказских хребтов: Маднеули, Поладеури и Саркинети. Ведь по-грузински "мадани" означает руда, "полади" - сталь, "ркина" - железо. И действительно, геологическая разведка подтвердила наличие в недрах этих мест железных руд, а вскоре в результате раскопок были обнаружены и древние штольни.

…Быть может, когда-нибудь в пятом или десятом тысячелетии, ученые обратят внимание на название древнего города Магнитогорска. Засучат геологи и археологи рукава, и закипит работа там, где когда-то кипела сталь.

"Компас бактерий"

В наши дни, когда пытливый взгляд ученых все дальше проникает в глубины Вселенной, не ослабевает интерес науки и к микромиру, полному тайн и любопытных фактов. Несколько лет назад, например, одному из сотрудников Вудсхолского океанографического института (США, штат Массачусетс) удалось обнаружить бактерии, способные ориентироваться в магнитном поле Земли и перемещаться строго в северном направлении. Как выяснилось, у этих микроорганизмов имеются две цепочки из кристаллического железа, которые, видимо, играют роль своеобразного "компаса". Дальнейшие исследования должны показать, для каких "путешествий" природа снабдила бактерии этим "компасом".

Медный стол

Один из наиболее интересных экспонатов Нижнетагильского краеведческого музея - массивный стол-памятник, изготовленный целиком из меди. Чем же он примечателен? Ответ на этот вопрос дает надпись на крышке стола: "Сия первая в России медь, отысканная в Сибири бывшим комиссаром Никитой Демидовым по грамотам Петра I в 1702, 1705 и 1709 годах, а из сей первоначальной меди сделан оный стол в 1715 году". Весит стол около 420 килограммов.

Чугунные экспонаты

Каких только коллекций не знает мир! Почтовые марки и открытки, старинные монеты и часы, зажигалки и кактусы, спичечные и винные этикетки - этим сегодня уже никого не удивишь. А вот у З. Романова - мастера литейного цеха из болгарского города Видин - конкурентов найдется немного. Он собирает фигурки из чугуна, но не художественные изделия, как, например, знаменитое каслинское литье, а те "произведения искусства", автором которых является. расплавленный чугун. Во время разливки брызги металла, застывая, обретают порой причудливые формы. В коллекции литейщика, которую он назвал "Шутки чугуна", есть фигурки животных и людей, сказочные цветы и многие другие любопытные предметы, которые создал чугун и подметил острый взгляд коллекционера.

Несколько более громоздки и, пожалуй, менее эстетичны экспонаты из коллекции одного из жителей США: он собирает чугунные крышки от канализационных колодцев. Как говорится, "чем бы дитя не тешилось…" Однако супруга счастливого владельца многочисленных крышек, видимо, рассуждала иначе: когда в доме уже не оставалось свободного места, она поняла, что семейному очагу пришла крышка, и подала на развод.

Почем нынче серебро?

Монеты из серебра впервые были отчеканены в Древнем Риме еще в III веке до нашей эры. Более двух тысячелетий серебро прекрасно справлялось с одной из своих функций - служить деньгами. И сегодня серебряные монеты имеют хождение во многих странах. Но вот беда: инфляция и рост цен на благородные металлы, в том числе на серебро, на мировом рынке привели к тому, что между покупательной способностью серебряной монеты и стоимостью заключенного в ней серебра образовался заметный разрыв, который растет с каждым годом. Так, например, стоимость серебра, содержащегося в шведской кроне, выпущенной в период с 1942 по 1967 год, в наши дни фактически оказалась в 17 раз выше официального курса этой монеты.

Таким несоответствием решили воспользоваться некоторые предприимчивые лица. Несложные подсчеты показали, что гораздо выгоднее извлекать серебро из однокроновых монет, чем использовать их по прямому назначению в магазинах. Переплавляя кроны в серебро, дельцы за несколько лет "заработали" около 15 миллионов крон. Они переплавляли бы серебро и дальше, но стокгольмская полиция пресекла их финансово-металлургическую деятельность, и бизнесмены-плавильщики предстали перед судом.

Стальные бриллианты

Долгие годы в отделе оружия Государственного исторического музея экспонировался эфес шпаги, изготовленной тульскими мастерами в конце XVIII столетия и подаренной ими Екатерине II. Разумеется, предназначавшийся в дар императрице эфес был не простым и даже не золотым, а бриллиантовым. Точнее говоря, он был усыпан тысячами стальных бусинок, которым умельцы Тульского оружейного завода с помощью специальной огранки придали вид бриллиантов.

Искусство гранения стали возникло, по-видимому, в начале XVIII века. Среди многочисленных подарков, полученных Петром I от туляков, обращала на себя внимание изящная шкатулка-сейф с гранеными стальными шариками на крышке. И хотя граней было немного, металлические "драгоценные камни" играли, притягивали к себе взгляд. С годами на смену алмазной огранке (16–18 граней) приходит бриллиантовая, где число граней может достигать сотни. Но для превращения стали в бриллианты требовалось много времени и труда, поэтому зачастую стальные драгоценности оказывались дороже настоящих. В начале прошлого века секреты этого замечательного искусства постепенно были утеряны. Приложил к этому руку и Александр I, категорически запретивший мастерам-оружейникам заниматься на заводе подобными "безделушками".

Но вернемся к эфесу. Во время ремонта музея эфес был похищен жуликами, которые прельстились множеством бриллиантов: грабителям и в голову не пришло, что эти "камни" сделаны из стали. Когда же "подделка" обнаружилась, раздосадованные похитители, пытаясь замести следы, совершили еще одно преступление: разломали бесценное творение русских умельцев и закопали его в землю.

Все же эфес удалось найти, но коррозия безжалостно расправилась с рукотворными бриллиантами: подавляющее большинство их (около 8,5 тысяч) было покрыто слоем ржавчины, а многие полностью разрушены. Почти все специалисты считали, что восстановить эфес невозможно. Но все же нашелся человек, взявшийся за это труднейшее дело: им стал московский художник-реставратор Е. В. Буторов, на счету которого было уже немало возрожденных шедевров русского и западного искусства.


"Я прекрасно сознавал ответственность и сложность предстоящей работы", - говорит Буторов. - "Все было неясно и неизвестно. Был непонятен принцип сборки рукояти, неизвестна технология изготовления бриллиантовой грани, не было инструментов, необходимых для реставрации. Прежде чем приступить к работе, я долго изучал эпоху создания эфеса, технологию оружейного производства того времени".

Художник вынужден был пробовать различные способы огранки, сочетая реставрационные работы с исследовательским поиском. Работа осложнялась тем, что "бриллианты" заметно различались как по форме (овальные, "маркиз", "фантазийные" и т. д.), так и по размерам (от 0,5 до 5 миллиметров), "простая" огранка (12–16 граней) чередовалась с" королевской" (86 граней).

И вот позади десять лет напряженного ювелирного труда, увенчавшегося большим успехом талантливого реставратора. Родившийся вновь эфес экспонируется в Государственном историческом музее.

Подземный дворец

Одной из красивейших станций Московского метрополитена по праву считается "Маяковская". Удивительной легкостью форм и изяществом линий очаровывает она москвичей и гостей столицы. Но, видимо, немногим известно, что эта парящая ажурность подземного вестибюля достигнута благодаря тому, что при его сооружении впервые в практике отечественного метростроения были применены стальные конструкции, сумевшие воспринять чудовищную нагрузку многометровой толщи грунта.

Строители станции использовали сталь и как отделочный материал. По проекту для облицовки арочных конструкций требовалась гофрированная нержавеющая сталь. Большую помощь метростроевцам оказали специалисты "Дирижаблестроя". Дело в том, что это предприятие располагало новейшей для того времени техникой, в том числе единственным в стране широкополосовым профилировочным станом. На этом предприятии как раз монтировали тогда цельнометаллический складывающийся дирижабль конструкции К. Э. Циолковского. Оболочка этого дирижабля состояла из металлических "скорлуп", соединяемых в подвижной "замок". Для прокатки таких деталей и был сооружен специальный стан.

Почетный заказ метростроевцев "Дирижабле строй" выполнил в срок; для надежности эта организация направила на станцию метро своих монтажников, которые и глубоко под землей оказались на высоте.

"Памятник" железу

В 1958 году в Брюсселе над территорией Всемирной промышленной выставки величественно возвышалось необычное здание - Атомиум. Девять громадных (диаметром 18 метров) металлических шаров как бы висели в воздухе: восемь - по вершинам куба, девятый - в центре. Это была модель кристаллической решетки железа, увеличенной в 165 миллиардов раз. Атомиум символизировал величие железа - металла-труженика, главного металла промышленности.

Когда выставка закрылась, в шарах Атомиума разместили небольшие рестораны и смотровые площадки, которые ежегодно посещало около полумиллиона человек. Предполагалось, что уникальное здание будет демонтировано в 1979 году. Однако, учитывая хорошее состояние металлоконструкций и немалые доходы, приносимые Атомиумом, его владельцы и власти Брюсселя подписали соглашение, продлевающее жизнь этого "памятника" железу по крайней мере еще на 30 лет, т. е. до 2009 года.

Титановые монументы

18 августа 1964 года в предрассветный час на проспекте Мира в Москве стартовала космическая ракета. Этому звездному кораблю не суждено было достичь Луны или Венеры, однако судьба, уготованная ему, не менее почетна: навеки застыв в московском небе, серебристый обелиск пронесет через столетия память о первом пути, проложенном человеком в космических далях.

Авторы проекта долго не могли выбрать облицовочный материал для этого величественного монумента. Сначала обелиск запроектировали в стекле, потом в пластмассе, затем в нержавеющей стали. Но все эти варианты были забракованы самими авторами. После долгих раздумий и экспериментов архитекторы решили остановиться на отполированных до блеска титановых листах. Из титана была изготовлена и сама ракета, венчавшая обелиск.

Этому "вечному металлу", как часто называют титан, отдали предпочтение и авторы еще одного монументального сооружения. На конкурсе проектов памятников в честь столетия Международного союза электросвязи, организованном ЮНЕСКО, первое место (из 213 представленных проектов) заняла работа советских архитекторов. Монумент, который предполагалось установить на площади Наций в Женеве, должен был представлять собой две бетонные раковины высотой 10,5 метра, облицованные пластинами полированного титана. Человек, проходящий между этими раковинами по специальной дорожке, мог бы услышать свой голос, шаги, ШУМ города, увидеть свое изображение в центре кругов, уходящих в бесконечность. К сожалению, этот интересный проект так и не был осуществлен.

А недавно в Москве был воздвигнут памятник Юрию Гагарину: двенадцатиметровая фигура космонавта № 1 на высокой колонне-постаменте и модель космического корабля "Восток", на котором был совершен исторический полет, выполнены из титана.

Пресс-гигант… колет орехи

Несколько лет назад французская фирма "Интерфорж" объявила о желании приобрести сверхмощный пресс для штамповки сложных крупногабаритных деталей авиационной и космической техники. В своеобразном конкурсе приняли участие ведущие фирмы многих стран. Предпочтение было отдано советскому проекту. Вскоре был заключен договор, и в начале 1975 года при въезде в старинный французский город Иссуар возник огромный производственный корпус, сооруженный для одной машины - уникального по мощности гидравлического пресса усилием 65 тысяч тонн. Контракт предусматривал не просто поставку оборудования, а сдачу пресса "под ключ", т. е. монтаж и пуск силами советских специалистов.

Точно в срок, установленный контрактом, 18 ноября 1976 года, пресс отштамповал первую партию деталей. Французские газеты называли его "машиной века" и приводили любопытные цифры. Масса этого гиганта - 17 тысяч тонн - в два раза превышает массу Эйфелевой башни, а высота цеха, где он установлен, равна высоте собора Парижской богоматери.

Несмотря на огромные размеры, процесс характеризуется большой скоростью штамповки, необычно высокой точностью. Накануне пуска агрегата французское телевидение показывало, как двух тысячетонная траверса пресса аккуратно раскалывает грецкие орехи, не повреждая их сердцевину, или задвигает поставленный "на попа" спичечный коробок, не оставляя при этом на нем ни малейших повреждений.

На церемонии, посвященной передаче пресса, выступил В. Жискар д"Эстен, в то время президент Франции. Заключительные слова своей речи он произнес по-русски: "Спасибо за это отличное достижение, которое делает честь советской промышленности".

Горелка вместо ножниц

Несколько лет назад в Кливленде (США) был создан новый научно-исследовательский институт легких металлов. На церемонии открытия традиционная ленточка, натянутая перед входом в институт, была из… титана. Чтобы ее перерезать, мэр города вместо ножниц вынужден был воспользоваться газовой горелкой и защитными очками.

Железное кольцо

Несколько лет назад в Музее истории и реконструкции Москвы появился новый экспонат - железное кольцо. И хотя это скромное колечко не шло ни в какое сравнение с роскошными перстнями из благородных металлов и драгоценных камней, работники музея отвели ему почетное место в своей экспозиции. Чем же привлекло это колечко их внимание?

Дело в том, что материалом для кольца послужило железо кандалов, которые долго носил в Сибири приговоренный к вечной каторге декабрист Евгений Петрович Оболенский, начальник штаба восстания на Сенатской площади. В 1828 году пришло высочайшее разрешение снять с декабристов кандалы. Отбывавшие наказание на Нерчинских рудниках вместе с Оболенским братья Николай и Михаил Бестужевы изготовили из его оков памятные железные кольца.

Более ста лет после смерти Оболенского хранилось кольцо вместе с другими реликвиями в его семье, переходя из поколения в поколение. И вот в наши дни потомки декабриста передали это необычное железное кольцо в музей.

Кое-что о лезвиях

Уже больше века люди пользуются лезвиями для бритья - тонкими заточенными пластинками из разных металлов. Всезнающая статистика утверждает, что в наши дни в мире ежегодно выпускается около 30 миллиардов лезвий.

Первое время их изготовляли главным образом из углеродистой стали, затем ей на смену пришла "нержавейка". В последние годы режущие кромки лезвий покрывают тончайшим слоем высокомолекулярных полимерных материалов, служащих сухой смазкой в процессе срезания волос, а для повышения стойкости режущих кромок на них иногда наносят атомарные пленки хрома, золота или платины.

"События" на рудниках

В 1974 году в СССР было зарегистрировано открытие, в основе которого лежат сложные биохимические процессы, совершаемые. бактериями. Многолетнее изучение сурьмяных месторождений показало, что сурьма в них постепенно окисляется, хотя при обычных условиях такой процесс не может протекать: для этого нужны высокие температуры - более 300 °C. Какие же причины заставляют сурьму нарушать химические законы?

Исследование образцов окисленной руды показало, что они густо заселены неизвестными прежде микроорганизмами, которые и были виновниками окислительных "событий" на рудниках. Но, окислив сурьму, бактерии не успокаивались на достигнутом: энергию окисления они тут же пускали в ход для осуществления другого химического процесса - хемосинтеза, т. е. для превращения углекислоты в органические вещества.

Явление хемосинтеза впервые обнаружено и описано еще в 1887 году русским ученым С. Н. Виноградским. Однако до сих пор науке было известно всего четыре элемента, при бактериальном окислении которых выделяется энергия для хемосинтеза: азот, сера, железо и водород. Теперь к ним прибавилась сурьма.

Медная "одежда" ГУМа

Кто из москвичей или гостей столицы не бывал в Государственном универсальном магазине - ГУМе? Построенное почти сто лет назад здание торговых рядов переживает свою вторую молодость. Специалисты Всесоюзного производственного научно-реставрационного комбината выполнили большие работы по реконструкции ГУМа. В частности, износившаяся за долгие годы крыша из оцинкованного железа заменена современным кровельным материалом - "черепицей" из листовой меди.

Трещины на маске

Долгие годы ученые вели спор по поводу уникального творения древнеегипетских мастеров - золотой маски фараона Тутанхамона. Одни утверждали, что она сделана из целого слитка золота. Другие считали, что ее собрали из отдельных частей. Для установления истины решено было воспользоваться кобальтовой пушкой. С помощью изотопа кобальта, точнее излучаемых им гамма-лучей, удалось установить, что маска действительно состоит из нескольких деталей, но настолько тщательно подогнанных одна к другой, что заметить линии стыка невооруженным глазом было невозможно.

В 1980 году знаменитая коллекция произведений искусства Древнего Египта демонстрировалась в Западном Берлине. В центре внимания, как всегда, находилась знаменитая маска Тутанхамона. Неожиданно в один из дней работы выставки специалисты заметили на маске три глубокие трещины. Вероятно, по каким-то причинам "швы", т. е. линии стыка отдельных частей маски, начали расходиться. Встревоженные не на шутку представители комиссии по делам культуры и туризма АРЕ поспешили вернуть коллекцию в Египет. Теперь слово за экспертизой, которая должна ответить на вопрос, что же стряслось с ценнейшим произведением искусства древности?

Лунный алюминий

Как и на Земле, металлы в чистом виде сравнительно редко встречаются на Луне. Тем не менее уже удалось найти частички таких металлов, как железо, медь, никель, цинк. В пробе лунного грунта, взятой автоматической станцией "Луна-20" в континентальной части нашего спутника - между Морем Кризисов и Морем Изобилия - впервые был обнаружен самородный алюминий. При исследовании лунной фракции массой 33 миллиграмма в Институте геологии рудных месторождений, петрографии, минералогии и геохимии АН СССР были выявлены три крохотные частицы чистого алюминия. Это плоские слегка удлиненные крупицы размером 0,22, 0,15 и 0,1 миллиметра с матовой поверхностью и серебристо-серые в свежем изломе.

Параметры кристаллической решетки самородного лунного алюминия оказались такими же, как у образцов чистого алюминия, полученного в земных лабораториях. В природе же на нашей планете самородный алюминий был найден учеными лишь один-единственный раз в Сибири. По мнению специалистов, на Луне этот металл должен чаще встречаться в чистом виде. Объясняется это тем, что лунный грунт постоянно "обстреливается" потоками протонов и других частиц космического излучения. Такая бомбардировка может привести к нарушению кристаллической решетки и к разрыву связей алюминия с другими химическими элементами в минералах, составляющих лунную породу. В результате "разрыва отношений" и появляются в грунте частицы чистого алюминия.

Корысти ради

Три четверти века назад произошло Цусимское сражение. В этом неравном бою с японской эскадрой морская пучина поглотила несколько русских кораблей и среди них - крейсер "Адмирал Нахимов".

Недавно японская фирма "Ниппон Марин" решила поднять крейсер со дна моря. Разумеется, операция по подъему "Адмирала Нахимова" объясняется не любовью к русской истории и ее реликвиям, а самыми что ни на есть корыстными соображениями: есть сведения, что на борту затонувшего судна находились слитки золота, стоимость которого в нынешних ценах может составить от 1 до 4,5 миллиарда долларов.

Уже удалось определить место, где на глубине около 100 метров лежит крейсер, и фирма готова приступить к его подъему. По расчетам специалистов, эта операция продлится несколько месяцев и обойдется компании примерно в полтора миллиона долларов. Что же, ради миллиардов можно рискнуть миллионами.

Предметы старины глубокой

Изготовленные сотни, а порой и тысячи лет назад изделия из дерева или камня, керамики или металла украшают стенды крупнейших музеев мира, занимают почетное место в многочисленных частных коллекциях. Любители старины готовы платить за произведения древних мастеров баснословные деньги, а некоторые предприимчивые любители денег, в свою очередь, готовы создавать в широком ассортименте и выгодно сбывать "предметы старины глубокой".

Как отличить подлинные раритеты от тонко выполненных подделок? Прежде единственным "прибором" для этой цели служил опытный глаз специалиста. Но, увы, на него не всегда можно положиться. Сегодня наука позволяет довольно точно определять возраст различных изделий из любых материалов.

Пожалуй, основным объектом фальсификации являются золотые украшения, статуэтки, монеты древних народов - этрусков и византийцев, инков и египтян, римлян и греков. Методы установления подлинности предметов из золота базируются на технологическом обследовании и анализе металла. По тем или иным примесям старое золото без труда удается отличить от нового, а методы обработки металла, которым пользовались античные мастера, и характер их творчества настолько оригинальны и неповторимы, что шансы фальсификаторов на успех сводятся к нулю.

Медные и бронзовые подделки эксперты узнают по особенностям поверхности металла, но главным образом по его химическому составу. Поскольку он неоднократно менялся на протяжении столетий, для каждого периода характерно определенное содержание основных компонентов. Так, в 1965 году коллекция берлинского музея Кунстхандель пополнилась ценным экспонатом - бронзовой позднеантичной лейкой в форме коня. Считалось, что эта лейка, или ритон, представляет собой "коптскую работу IX–X веков". Точно такой же бронзовый ритон, подлинность которого не вызывала сомнений, хранится в Эрмитаже. Тщательное сравнение экспонатов навело ученых на мысль о том, что берлинский конь не что иное, как искусно изготовленная подделка. И действительно, анализ подтвердил опасения: бронза содержала 37–38 % цинка - многовато для X века. Вероятнее всего, полагают эксперты, этот ритон появился на свет лишь за несколько лет до того, как он попал в Кунстхандель, т. е. примерно в 1960 году - в "час пик" моды на коптские изделия.

В борьбе с подделками

Для определения подлинности древних керамических изделий ученые успешно применяют метод археомагнетизма. В чем же он заключается? При охлаждении керамической массы содержащиеся в ней частицы железа имеют "привычку" выстраиваться вдоль силовых линий магнитного поля Земли. А так как оно со временем меняется, то меняется и характер расположения железных частиц, благодаря чему путем несложных исследований можно определить возраст "подозреваемого" изделия из керамики. Даже если фальсификатору удалось подобрать состав керамической массы, сходный с древними составами, и искусно скопировать форму изделия, то расположить соответствующим образом частицы железа он, разумеется, не в силах. Это-то его и выдаст с головой.

Рост "железной мадам"

Как известно, у металлов довольно высокий коэффициент теплового расширения.

По этой причине стальные сооружения в зависимости от времени года, а следовательно, от температуры окружающего воздуха, становятся то длиннее, то короче. Так, знаменитая Эйфелева башня - "железная мадам", как часто называют ее парижане, - летом на 15 сантиметров выше, чем зимой.

"Железный дождь"

Наша планета не очень гостеприимно встречает небесных странников: при входе в плотные слои ее атмосферы крупные метеориты обычно взрываются и падают на земную поверхность в виде так называемых "метеоритных дождей".

Самый обильный такой "дождь" выпал 12 февраля 1947 года над западными отрогами Сихотэ-Алиня. Он сопровождался грохотом взрывов, в радиусе 400 километров был виден болид - яркий огненный шар с огромным светящимся дымным хвостом.

Для изучения столь необычных "атмосферных осадков" в зону падения космического пришельца вскоре прибыла экспедиция Комитета по метеоритам АН СССР. В таежных дебрях ученые нашли 24 кратера диаметром от 9 до 24 метров, а также более 170 воронок и лунок, образованных частицами "железного дождя". Всего экспедиция собрала свыше 3500 железных осколков общей массой 27 тонн. По мнению специалистов, до встречи с Землей этот метеорит, получивший название Сихотэ-Алинского, весил около 70 тонн.

Термиты-геологи

Геологи нередко пользуются "услугами" многих растений, которые служат своеобразными индикаторами определенных химических элементов и благодаря этому помогают обнаружить в почве залежи соответствующих полезных ископаемых. А горный инженер из Зимбабве Уильям Уэст решил привлечь в качестве помощников при геологических поисках представителей не флоры, а фауны, точнее говоря, обыкновенных африканских термитов. При постройке своих конусообразных "общежитий" - термитников (их высота достигает иногда 15 метров) эти насекомые проникают глубоко в землю. Возвращаясь на поверхность, они выносят с собой строительный материал - "пробы" грунта с различной глубины. Вот почему исследование термитников - определение их химического и минерального состава - позволяет судить о наличии в почве данной местности тех или иных полезных ископаемых.

Уэст провел множество экспериментов, которые затем легли в основу его "термитного" метода. Уже получены и первые практические результаты: благодаря методу инженера Уэста открыты богатые золотоносные пласты.

Что подо льдами Антарктиды?

Открытая в 1820 году Антарктида до сих пор остается континентом загадок: ведь практически вся ее территория (кстати почти в полтора раза превышающая площадь Европы) закована в ледовый панцирь. Толщина льда составляет в среднем 1,5–2 километра, а в некоторых местах достигает 4,5 километра.

Заглянуть под эту "скорлупку" непросто, и хоть уже более четверти века ученые ряда стран ведут здесь интенсивные исследования, Антарктида раскрыла далеко не все свои тайны. В частности, ученых интересуют природные ресурсы этого материка. Многие факты говорят о том, что Антарктида имеет общее геологическое прошлое с Южной Америкой, Африкой, Австралией и, следовательно, у этих регионов должны быть примерно сходными спектры полезных ископаемых. Так, антарктические горные породы, по-видимому, содержат алмазы, уран, титан, золото, серебро, олово. Кое-где уже обнаружены пласты каменного угля, залежи железных и медномолибденовых руд. Преградой на пути к ним стоят пока горы льда, но рано или поздно эти богатства поступят в распоряжение людей.

Муниципальное бюджетное общеобразовательное учреждение «Средняя общеобразовательная школа № 4» г. Сафоново Смоленской области Проект Работу выполнили: Писарева Ксения, 10 класс Стрелюгина Анастасия, 10 класс Курировала работу: Соколова Наталья Ивановна, учитель биологии и химии 2015/2016 учебный год Проект Тема «Химические вещества, используемые в архитектуре» Типология проекта: реферативный индивидуальный краткосрочный Цель: интеграция по теме «Памятники архитектуры» предмета «Мировая художественная культура» и сведения о химических веществах, используемых в архитектуре. Химия - это наука, связанная со многими областями деятельности, а также с другими науками: физикой, геологией, биологией. Не обошла она стороной и один из наиболее интересных видов деятельности - архитектуру. Человеку, работающему в данной области, поневоле приходиться сталкиваться с разными видами строительных материалов и каким-то образом уметь их комбинировать, что-либо к ним добавлять для большей прочности, стойкости или, чтобы придать наиболее красивый внешний облик зданию. Для этого архитектуру необходимо знать состав и свойства строительных материалов, необходимо знать поведение их в обычных и экстремальных условиях внешней среды той местности, в которой ведется строительство. Задача этой работ - познакомить с наиболее интересными по своему архитектурному замыслу строениями и рассказать об используемых при их строительстве материалов. № п/п 1. 2. 3. 4. 5. 6. Раздел проекта Успенский собор Исаакиевский собор Покровский собор Смоленский Успенский собор Святот-Владимировский храм Презентация Используемые объекты Фото Фото Фото Фото Фото Владимирский Успенский собор Находится он во Владимире. «Золотой век» строительства древнего Владимира - вторая половина XII века. Успенский собор города является самым ранним архитектурным памятником этого периода. Выстроенный в 1158-1160 годах при князе Андрее Боголюбском, собор позднее подвергся значительной перестройке. Во время пожара 1185 года старый Успенский собор был сильно поврежден. Князь Всеволод III, «не искавший мастеров от немец», приступает тотчас к его восстановлению силами местных мастеров. Здание сложено из тесаного белого камня, составлявшего мощную «коробку» стены, которая заполнялась бутом на прочном известковом растворе. К сведению, бутовый камень- это крупные куски неправильной формы размером 150-500 мм, массой 20-40 кг, получаемые при разработке известняков, доломитов и песчаников (реже), гранитов и других изверженных пород. Камень, получаемый при взрывных работах, носит общее название «рваного». Бутовый камень должен быть однородным, не иметь следов выветривания, расслоения и трещин и не содержать рыхлых и глинистых включений. Предел прочности при сжатии камня из осадочных пород не менее 10 МПа(100кгс/см), коэффициент размягчения не ниже 0,75, морозостойкость не менее 15 циклов. Бутовый камень широко применяют для бутовой и бутобетонной кладки фундаментов, стен неотапливаемых зданий, подпорных стен, ледорезов и резервуаров. Новый Успенский собор был создан в эпоху Всеволода, о котором автор «Слова о полку Игореве» писал, что воины князя могут «расплескать веслами Волгу». Собор из одноглавого становится пятиглавым. На его фасадах относительно мало скульптурного декора. Его пластическое богатство- в профилированных откосах щелевидных окон и широких перспективных порталах с орнаментированным верхом. Как его внешний облик, так и интерьер приобретает новый характер. Внутреннее убранство собора поражало современников праздничной народностью, которую создавали обилие позолоты, майоликовые полы, драгоценная утварь и особенно фресковая стенопись. Исаакиевский собор Одним из не менее красивых зданий является Исаакиевский собор, находящийся в Санкт-Петербурге. В 1707 году церковь, получившую название Исаакиевской, освятили. 19 февраля 1712 года в ней состоялся публичный обряд венчания Петра I с Екатериной Алексеевной. 6 августа 1717 года на берегу Невы закладывается вторая Исаакиевская церковь, построенная на проекту архитектора Г.И. Маттарнови. Строительные работы продолжались до 1727 года, но уже в 1722 году церковь упоминается среди действующих. Однако место для ее строительства было выбрано неудачно: еще не были укреплены берега Невы, и начавшееся оползание грунта вызвало трещины в стенах и сводах зданий. В мае 1735 году от удара молнии возник пожар, довершивший начавшиеся разрушения. 15 июля 1761 года указом Сената проектирование и строительство новой Исаакиевской церкви было поручено С.И. Чевакинскому-автору Никольского собора. Но ему не пришлось осуществить свой замысел. Сроки строительства были перенесены. Вступив в 1762 году на престол, Екатерина II проектирование и строительство поручила архитектору Антонио Ринальди. Собор был задуман с пятью сложными по рисунку куполами и высокой колокольней. Мраморная облицовка должна придумать изысканность цветовому решению фасадов. Свое название эта горная порода получила от греческого «мраморос» - блестящий. Эта карбонатная порода состоит, в основном, из кальцита и доломита, а иногда включает и другие минералы. Она возникает в процессе глубинного преобразования обычных, то есть осадочных известняков и доломитов. При процессах метаморфизма, идущих в условиях высокой температуры и большого давления, осадочные известняки и доломиты перекристаллизовываются и уплотняются; в них нередко образовываются многие новые минералы. Например, кварц, халцедон, графиты, гематит, пирит, гидроксиды железа, хлорит, брусит, тремолит, гранат. Большинство из перечисленных минералов наблюдается в мраморах лишь в виде единичных зерен, но, подчас, некоторые из них содержатся в значительных количествах, определяя важные физикомеханические, технические и иные свойства породы. Мрамор имеет хорошо выраженную зернистость: на поверхности скола камня видны отблески, возникающие при отражении света от так называемых плоскостей спайности кристаллов кальцита и доломита. Зерна бывают мелкими (менее 1 мм), средними и крупными (несколько миллиметров). От величины зерен зависит прозрачность камня. Так у Каррарского белого мрамора прочность при сжатии составляет 70 мегапаскалей и он быстрее разрушается при нагрузке. Предел прочности мелкозернистого мрамора достигает 150-200 мегапаскалей и этот мрамор более стоек. Но строительство велось крайне медленно. Ринальди вынужден был уехать из Петербурга, не завершив работы. После смерти Екатерины II Павел I поручил придворному архитектору Винченцо Бренна спешно завершить его. Бренна вынужден был исказить проект Ринальди: уменьшить размеры верхней части собора, вместо пяти куполов возвести один; мраморная облицовка была доведена лишь до карниза, верхняя часть оставалась кирпичной. Сырьем для силикатного кирпича служит известь и кварцевый песок. При приготовлении массы известь составляет 5,56,5% по массе, а вода 6-8%. Подготовленную массу прессуют, а затем подвергают нагреванию. Химическая сущность процесса твердения силикатного кирпича совершенно иная, чем при связующего материала на основе извести и песка. При высокой температуре значительно ускоряется кислотно-основное взаимодействие гидроксида кальция Ca(OH)2 с диоксидом кремния SiO2 с образованием соли-силиката кальция CaSiО3. Образование последнего и обеспечивает связку между зернами песка, а, следовательно,прочность и долговечность изделия. В результате было создано приземистое кирпичное здание, не гармонировавшее с парадным обликом столицы. 9 апреля 1816 года во время пасхального богослужения отсыревшая штукатурка упала со сводов на правый клирос. Вскоре собор закрыли. В 1809 году объявили конкурс на создание проекта перестройки Исаакиевского собора. Из конкурсов ничего не вышло. В 1816 году Александр I поручает А. Бетанкуру подготовить положение по перестройке собора и подобрать для этого архитектора. Бетанкур предложил доверить эту работу молодому архитектору, приехавшему из Франции, Огюсту Рикару де Монферрану. Альбом с его рисунками А. Бетанкур представил царю. Работы настолько понравились Александру I, что последовал указ о назначении Монферрана «императорским архитектором». Только 26 июля 1819 года состоялся торжественный акт обновление Исаакиевской церкви. На сваи был положен первый гранитный камень с бронзовой позолоченной доской. Граниты относятся к числу наиболее распространенных строительных, декоративных и облицовочных материалов и в этой роли выступают с древнейших времен. Он прочен, его относительно легко обрабатывать, придавая изделиям разную форму, он хорошо держит полировку и очень медленно выветривается. Обычно гранит имеет зернистое однородное строение и, хотя он состоит из разноцветных зерен разных минералов, общий тон его окраски ровный розовый или серый. Специалист-геолог назовер гранитом кристаллическую горную породу глубинного магматического или горного происхождения состоящую из трех главных минералов: полевого шпата (его обычно около 30-50% объема породы), кварца (около 30-40%) и слюды (до 10-15%). Это то розовый микроклин или ортоклаз, то белый альбит или онигоклаз, то сразу два полевых шпата. Аналогично и слюды бывают предоставлены то мусковитом (светлая слюда), то биотитом (черная слюда). Иногда вместо них в граните присутствуют другие минералы. Например, красный гранат или зеленороговая обманка. Все минералы, слагающие гранит, по химической природе являются силикатами, порой весьма сложного строения. 3 апреля 1825 года был учрежден перерабатывающий проект Монферрана. При возведении стен и опорных пилонов тщательно готовили известковый раствор. В кадки попеременно сыпали просеянную известь и песок так, чтобы один слой ложился на другой, затем их смешивали, и этот состав выдерживали не менее трех суток, после чего использовали для кирпичной кладки. Интересно, что известь - древнейший связующий материал. Археологические раскопки показали, что во дворцах древнейшего Китая имелись росписи стен пигментами, закрепленными гашеной известью. Негашеную известь - оксид кальция CaO -получали обжигом различных природных карбонатов кальция. CaCO₃ CaO +CO₂ Содержание в негашеной извести небольших количеств неразложившегося карбоната кальция улучшает связующие свойства. Гашение извести сводится к переводу оксида кальция в гидроксид. CaO + H₂O Ca (OH)2 + 65 кДЖ Твердение извести связано с физическими и химическими процессами. Во-первых, происходит испарение механически перемешанной воды. Во-вторых, гидроксид кальция кристализуется, образуя известковый каркас из сросшихся кристаллов Ca(OH)₂. Кроме того, идет взаимодействие Са(ОН)₂ с СО₂ с образованием карбоната кальция (карбонизация). Плохо или «ложно» высохшая штукатурка может привести к отслаиванию пленки масляной краски вследствие образования мыла в результате взаимодействия кальциевой щелочи с жирами олифы. Добавление песка к известковому тесту необходимо потому, что в ином случае при затвердении оно дает сильную усадку и растрескивается. Песок служит как бы арматурой. Стены из кирпича возводились толщиной от двух с половиной до пяти метров. Вместе с мраморной облицовкой это в 4 раза превышает обычную толщину стен гражданских сооружений. Мраморная облицовка наружная, толщиной 5-6 см, и внутренняя, толщиной 1,5 см, выполнялась вместе с кирпичной кладкой стен и связывалась с ней железными крючьямипиронами. Перекрытия создавались из кирпича. Тротуар предполагалось устроить из сердобольского гранита, а пространство за оградой вымостить лещадками красного мрамора и бордюром из красного гранита. В природе встречаются белые, серые, черные и цветные мраморы. Цветные мраморы распространены очень широко. Нет другого декоративного камне, за исключением, пожалуй, яшмы, которому были бы свойственны очень разнообразные окраска и узор, как цветному мрамору. Цвет мрамора обычно вызван тонкокристаллической, чаще пылевидной, примесью яркоокрашенных минералов. Красный, фиолетовый, пурпурный цвета обычно объясняются присутствием красного оксида железа - минерала сематита. Покровский собор Покровский собор (1555-1561 гг.) (г. Москва) Построенный XVI в. гениальными русскими зодчими Бармой и Постником, Покровский собор - жемчужина русской национальной архитектуры - логически завершает ансамбль Красной площади. Собор представляет собой живописное сооружение из девяти высоких башен, украшенных причудливыми куполами, разнообразными по форме и окраске. Еще одна небольшая фигурная (десятая) главка венчает церковь Василия Блаженного. В центре этой группы возвышается резко отличающаяся по своим размерам, форме и убранству главная башня - церковь Покрова. Она состоит из трех частей: четырехгранника с квадратным основанием, восьмигранного яруса и шатра, заканчивающегося восьмигранным световым барабаном с золоченой главкой. Переход от восьмигранной части центральной части башни к шатру осуществляется с помощью целой системы кокошников. Основание шатра покоится на широком белокаменном карнизе, имеющем форму восьмиконечной звезды. Центральная башня окружена четырьмя большими башнями, расположенными по странам света, и четырьмя малыми, разместившимися по диагоналям. Нижний ярус опирается гранями на сложный по форме и красивый по рисунку цоколь из красного кирпича и белого камня. Красный глиняный кирпич изготавливают из замешанной с водой глины с последующим формованием, сушкой и обжигом. Сформированный кирпич (сырец) недолжен давать трещин при сушке. Красная окраска кирпича обусловлена наличием в глине Fe₂O₃. Эта окраска получается, если обжиг ведут в окислительной атмосфере, то есть при избытке кислорода. При наличии восстановителей на кирпиче появляются серовато-сиреневые тона. В настоящее время используют пустотелый кирпич, то есть имеющий внутри полости определенной формы. Для облицовки зданий изготавливают двухслойный кирпич. При его формовании на обычный кирпич наносится слой из светложгущейся глины. Сушку и обжиг двухслойного облицовочного кирпича проводят по обычной технологии. Важными характеристиками кирпича являются влагопоглощение и морозостойкость. Для предотвращения разрушения от атмосферных воздействий кирпичную кладку обычно защищают штукатуркой, облицовыванием плиткой. Особым видом глиняного обожженного кирпича является клинкерный. Его применяют в архитектуре для облицовки цоколей зданий. Клинкерный кирпич производят из специальной глины с большой вязкостью и малой деформируемостью при обжиге. Он характеризуется сравнительно низким водопоглощением, большой прочностью на сжатие и большой износостойкостью. Смоленский Успенский собор С какой бы стороны вы ни подъезжали к Смоленску, отовсюду издалека видны купола Успенского собора — одного из самых больших храмов России. Храм увенчивает высокую, расположенную между двумя глубоко врезанными в береговой откос оврагами, гору. Увенчанный пятью главами (вместо семи по первоначальному варианту), праздничный и торжественный, с пышным барочным декором на фасадах, он высоко возносится над городской застройкой. Грандиозность здания ощущается и снаружи, когда стоишь у его подножия, и внутри, где среди наполненного светом и воздухом пространства уходит ввысь, мерцая золотом, гигантский, необыкновенно торжественный и пышный позолоченный иконостас — чудо резьбы по дереву, одно из выдающихся произведений декоративного искусства XVIII века, созданное в 1730— 1739 годах украинским мастером Силой Михайловичем Тру-сицким и его учениками П. Дурницким, Ф. Олицким, А. Мастицким и С. Яковлевым. Рядом с Успенским собором, почти вплотную к нему, стоит двухъярусная соборная колокольня. Маленькая, она несколько теряется на фоне огромного храма. Колокольня построена в 1767 году в формах петербургского барокко по проекту архитектора Петра Обухова, ученика известного мастера барокко Д. В. Ухтомского. В нижней части колокольни сохраняются фрагменты предыдущей постройки 1667 года. Успенский собор в Смоленске был построен в 1677-1740гг. Первый собор на этом месте заложил еще в 1101 году сам Владимир Мономах. Собор стал первым каменным зданием в Смоленске, не раз перестраивался - в том числе Успенский кафедральный собор в Смоленске внуком Мономаха князем Ростиславом, пока в 1611 году уцелевшие защитники Смоленска, целых 20 месяцев оборонявшиеся от войск польского короля Сигизмунда III, напоследок, когда поляки все же ворвались в город, взорвали пороховой погреб. К сожалению, погреб располагался прямо на Соборной горе, и взрыв практически разрушил древний храм, похоронив под его обломками многих смолян и древние усыпальницы смоленских князей и святых. В 1654 году Смоленск был возвращен России, и набожный царь Алексей Михайлович выделил из казны целых 2 тысячи рублей серебром на возведение нового главного храма в Смоленске. Остатки древних стен под руководством московского зодчего Алексея Королькова разбирали больше года, а в 1677 году началось строительство нового собора. Однако из-за того, что архитектор нарушил заданные пропорции, строительство приостановилось до 1712 года. Успенский кафедральный собор в Смоленске. В 1740 году под руководством архитектора А.И.Шеделя работы закончились, и храм был освящен. В первоначальном виде он простоял всего лет двадцать, - сказалось наличие разных архитекторов и постоянные перемены в проекте. Кончилось это обрушением центральной и западной глав собора (всего их было тогда семь). Верх восстановили в 1767-1772гг., но уже с простым традиционным пятиглавием, которое мы теперь и видим. Этот собор не просто виден отовсюду, он еще и по-настоящему огромен - вдвое больше Успенского собора в Московском Кремле: 70 метров высотой, 56,2 метра в длину и 40,5 - в ширину. Отделка собора выполнена в стиле барокко как снаружи, так и внутри. Интерьер собора поражает своей пышностью и роскошью. Работы по росписи храма длились 10 лет под руководством С.М.Трусицкого. Успенский кафедральный собор в Смоленске. Великолепный иконостас 28 метров в высоту сохранился до наших дней, а вот главная святыня - икона Божией Матери Одигитрии - пропала в 1941 году. Успенский кафедральный собор в Смоленске Соборная колокольня, меркнущая на фоне громадного храма, построена в 1763-1772 гг. с северо-запада от собора. Она поставлена на месте прежней колокольни, и в основании сохранились старинные фундаменты. В то же время была выстроена ограда собора с тремя высокими воротами, по форме напоминающими триумфальные арки. От центральной улицы наверх, на Соборную гору, ведет широкая гранитная лестница того же времени, завершающаяся гульбищем. Собор пощадило и время, и войны, прошедшие через Смоленск. Наполеон после взятия города даже приказал выставить охрану, поразившись великолепию и красоте собора. Сейчас собор действующий, в нем ведутся службы. Свято-Владимирский храм г. Сафоново, Смоленская область В мае 2006 года город Сафоново отметил знаменательный юбилей - сто лет назад состоялось открытие первого церковного прихода на территории будущего города. В то время на месте нынешних городских кварталов был ряд деревень, селец и хуторов, окружавших железнодорожную станцию, которая по близлежащему уездному городу называлась “Дорогобуж”. Ближе всех к станции находились сельцо Дворянское (нынешняя улица Красногвардейская) и через речку Величку от него - помещичья усадьба Толстое (сейчас на ее месте небольшой парк). Толстое, получившее свое название от дворян Толстых, известно с начала XVII века. К началу XX века это была небольшая владельческая усадьба с одним двором. Ее владельцем был выдающийся общественный деятель Смоленской губернии Александр Михайлович Тухачевский - родственник известного советского маршала. Александр Тухачевский в 1902-1908 гг. возглавлял Дорогобужское местное самоуправление - земское собрание, а в 1909-1917 гг. руководил губернской земской управой. Дворянским владели дворянские семьи Лесли и Бегичевых. Строительство в 1870 г. железнодорожной станции на берегу речки Велички превратило это захолустное местечко в один из важнейших экономических центров Дорогобужского уезда. Здесь появились склады леса, постоялые дворы, лавки, почтовая станция, аптека, пекарни... Начало расти население пристанционного поселка. Здесь появилась пожарная дружина, а при ней в 1906 г. была организована общественная библиотека - первое учреждение культуры будущего города. Вероятно, не случайно, что в этом же году организационное оформление получила и духовная жизнь округи. В 1904 г. рядом с Толстым был возведен каменный храм во имя архистратига Михаила, тем самым владельческая усадьба превратилась в село. Вероятно, Архангельский храм был некоторое время приписным к одному из ближайших сел. Однако уже 4 мая (17 мая - по н. ст.) 1906 года вышел указ Святейшего Правительственного Синода №5650, в котором говорилось: “При новоустроенной церкви села Толстого Дорогобужского уезда открыть самостоятельный приход с причтом из священника и псаломщика с тем, чтобы содержание причта новооткрываемого прихода относилось исключительно на изысканные местные средства”. Так началась жизнь прихода села Толстого и станции “Дорогобуж”. Ныне наследником церкви села Толстого является расположенный на его месте Свято-Владимирский храм. К счастью, история сохранила нам имя строителя Михайло- Архангельского храма. Им был один из известнейших российских архитекторов и инженеров профессор Василий Герасимович Залесский. Он был дворянином, однако изначально его род принадлежал к духовенству и был известен на Смоленщине с XVIII века. Выходцы из этого рода поступали на гражданскую и военную службу и, достигнув высоких чинов и рангов, жаловались дворянским достоинством. Василий Герасимович Залесский с 1876 г. служил в должности городового архитектора при Московской городовой управе и большинство своих построек возвел именно в Москве. Он строил и фабричные здания, и общественные дома, и частные особняки. Наверное, больше всего из его построек известен дом сахарозаводчика П.И.Харитоненко на Софийской набережной, где ныне размещается резиденция английского посла. Интерьеры этого здания отделаны Федором Шехтелем в стиле эклектики. Василий Герасимович был ведущим специалистом в России по вентиляции и отоплению. Он имел собственную контору, занимавшуюся работами именно в этой сфере. Залесский вел большую преподавательскую деятельность, издал популярный учебник по строительной архитектуре. Он состоял членомкорреспондентом Петербургского общества архитекторов, членом Московского архитектурного общества, возглавлял Московское отделение Общества гражданских инженеров. В конце XIX века В.Г.Залесский приобрел в Дорогобужском уезде небольшое имение в 127 десятин с сельцом Шишкиным. Оно живописно располагалось на берегу речки Вопец. Ныне Шишкино является северной окраиной города Сафонова. Имение было куплено Залесским в качестве дачи. Несмотря на то, что Шишкино являлось для Василия Герасимовича местом отдыха от его обширной профессиональной деятельности, он не оставался в стороне от жизни местной округи. По просьбе председателя Дорогобужского уездного собрания князя В.М.Урусова Залесский бесплатно составил планы и сметы для строительства земских начальных школ с одной и двумя классными комнатами. В двух верстах от Шишкина в деревне Алешине дорогобужское земство стало создавать большую больницу. В 1909 г. Василий Залесский принял на себя обязательства быть попечителем этой строящейся больницы, а в 1911 г. предложил оборудовать в ней центральное отопление за свой счет. Тогда же земство просило его “принять участие в надзоре за устройством больницы в Алешине”. В.Г.Залесский был почетным попечителем пожарной дружины станции “Дорогобуж” и жертвователем книг для ее общественной библиотеки. Любопытно, что помимо Михаило-Архангельского храма села Толстого В.Г.Залесский имеет отношение и к Смоленскому Успенскому собору. По свидетельству его родных, он устраивал там центральное отопление. Вскоре после открытия прихода в селе Толстом появилась и церковно-приходская школа, которая имела собственное здание. Первое упоминание о ней относится к 1909 г. Нынешний Свято-Владимирский храм Сафонова славится своим прекрасным церковным хором. Примечательным фактом является то, что век назад такой же славный хор был и в храме села Толстого. В 1909 г. в заметке “Смоленских епархиальных ведомостей”, посвященной освящению вновь построенного большого девятиглавого храма села Неелова, сообщалось, что при торжественном богослужении прекрасно пел певческий хор со станции “Дорогобуж”. Михаило-Архангельский храм, как любая вновь построенная церковь, не имел древних икон и был, вероятно, достаточно скромен по своему внутреннему убранству. Во всяком случае, настоятель храма в 1924 г. отмечал, что какой-либо художественной ценностью обладают лишь две иконы - Божией Матери и Спасителя. В настоящее время известно имя только одного настоятеля храма. С 1 декабря 1915 г. и, по крайней мере, до 1924 г. им был отец Николай Морозов. Вероятно, он служил в Толстовской церкви и в последующие годы. В 1934 г. храм села Толстого был закрыт постановлением Смоленского облисполкома №2339 и использовался под склад сортового зерна. В годы Великой Отечественной войны здание церкви было разрушено и лишь в 1991 г. по единственной сохранившейся фотографии порушенный храм был заново отстроен стараниями своего настоятеля отца Антония Мезенцева, который ныне в чине архимандрита возглавляет общину Болдинского монастыря. Так первый храм Сафонова завершил круг своей жизни, в чем-то повторив путь Спасителя: от распятия и гибели за веру до воскресения Божественным провидением. Пусть же это чудо возрождения из пепла порушенной сафоновской святыни станет для жителей города ярким примером созидательной силы человеческого духа и веры Христовой.

Химические вещества широко используются не только для проведения химических экспериментов, но и для изготовления различных поделок, а также в качестве строительных материалов.

Химические вещества, как строительные материалы

Рассмотрим ряд химических элементов, которые применяются в строительстве и не только. Например, глина - мелкозернистая осадочная горная порода. Она состоит из минералов группы каолинита, монтмориллонита или других слоистых алюмосиликатов. Она содержит песчаные и карбонатные частицы. Глина является хорошим гидроизолятором. Данный материал применяют для изготовления кирпичей и в качестве сырья для гончарного дела.

Мрамор также является химическим материалом, который состоит из рекристализованного кальцита или доломита. Окраска мрамора зависит от примесей в него входящих и может иметь полосчатый или пестрый оттенок. Благодаря оксиду железа мрамор окрашивается в красный цвет. С помощью сульфида железа он приобретает сине-черный оттенок. Другие цвета также обусловлены примесями битумов и графита. В строительстве под мрамором понимают собственно мрамор, мраморизованный известняк, плотный доломит, карбонатные брекчии и карбонатные конгломераты. Его широко используют в качестве отделочного материала в строительстве, для создания памятников и скульптур.

Мел также является осадочной горной породой белого цвета, которая не растворяется в воде и имеет органическое происхождение. В основном, он состоит из карбоната кальция и карбоната магния и оксидов металла. Мел используется в:

  • медицине;
  • сахарной промышленности, для очистки стекловидного сока;
  • производства спичек;
  • производства мелованной бумаги;
  • для вулканизации резины;
  • для изготовления комбикормов;
  • для побелки.

Область применения данного химического материала весьма разнообразна.

Эти и еще многие другие вещества можно использовать в строительных целях.

Химические свойства строительных материалов

Поскольку строительные материалы - это тоже вещества, они имеют свои химические свойства.

К основным из них относятся:

  1. Химическая стойкость - это свойство показывает, насколько материал устойчив к воздействию других веществ: кислот, щелочей, солей и газов. Например, мрамор и цемент могут разрушаться под воздействием кислоты, однако к щелочи они устойчивы. Строительные материалы из силиката наоборот устойчивы к кислотам, но не к щелочи.
  2. Коррозионная устойчивость - свойство материала противостоять воздействиям окружающей среды. Чаще всего это относится к способности не пропускать влагу. Но есть еще и газы, способные вызвать коррозию: азот и хлор. Биологические факторы тоже могут быть причиной коррозии: воздействие грибов, растений или насекомых.
  3. Растворимость - свойство, при котором материал имеет способность растворяться в различных жидкостях. Данную характеристику следует учитывать при подборе строительных материалов и их взаимодействии.
  4. Адгезия - свойство, которое характеризует способность соединяться с другими материалами и поверхностями.
  5. Кристаллизация - характеристика, при которой материал может в состоянии пара, раствора или расплава образовывать кристаллы.

Химические свойства материалов необходимо учитывать при проведении строительных работ, чтобы не допустить несовместимости или нежелательной совместимости некоторых строительных веществ.

Композитные материалы химического отверждения

Что такое композитные материалы химического отвержения и для чего они применяются?

Это такие материалы, которые представляют собой систему из двух компонентов, например, «порошок-паста» или «паста-паста». В данной системе один из компонентов содержит химический катализатор, обычно это пероксид бензола или другой химический активатор полимеризации. При смешивании компонентов начинается реакция полимеризации. Данные композитные материалы чаще используют в стоматологии для изготовления пломб.

Нанодисперсные материалы в химической технологии

Нанодисперсные вещества применяются в промышленном производстве. Их используют в качестве промежуточной фазы при получении материалов с высокой степенью активности. А именно при изготовлении цемента, создании резины из каучука, а также для изготовления пластмасс, красок и эмалей.

При создании резины из каучука, к нему добавляют тонкодисперсную сажу, что повышает прочность изделия. При этом частицы наполнителя должны быть достаточно мелкими, чтобы обеспечить однородность материала и иметь большую поверхностную энергию.

Химическая технология текстильных материалов

Химическая технология текстильных материалов описывает процессы подготовки и обработки текстильных изделий с помощью химических веществ. Знание данной технологии нужно для текстильных производств. Данная технология базируется на неорганической, органической, аналитической и коллоидной химии. Суть ее заключается в освещении технологических особенностей процессов подготовки, колорирования и заключительной отделки текстильных материалов различного волокнистого состава.

Об этих и других химических технологиях, например, такой, как химическая организация генетического материала можно узнать на выставке «Химия». Она пройдет в Москве, на территории «Экспоцентра».