Потери электрической и тепловой энергии при транспортировке. Нормативно-правовые аспекты взаимоотношений потребителей тепловой энергии с энергоснабжающими организациями

Потери электрической и тепловой энергии при транспортировке. Нормативно-правовые аспекты взаимоотношений потребителей тепловой энергии с энергоснабжающими организациями

КОНСПЕКТ ЛЕКЦИЙ

Лекция №1

СИСТЕМЫ ТЕПЛОСНАБЖЕНИЯ

Потребители тепловой энергии

Виды теплоносителей:

процессов, непригоден для ГВС

Расхода теплоты на отопление, вентиляцию,

ГВС и технологические нужды

Расход теплоты на отопление.

Тепловые потери жилых и общественных помещений компенсируются теплом, вносимым системой отопления, подсчет потерь теплоты зданий, необходимый для определения теплопроизводительности систем отопления, не сложен.

В тех случаях, когда необходимо знать приближенно значение потери теплоты зданием в целом, задача решается путем определения тепловой характеристики здания, потери теплоты здания определяется:

Q О = q о. V H (t вн – t н), кВт (1)

где: V H – наружный строительный объем здания, м 3 ;

q о – удельная отопительная характеристика здания Вт / (м 3 * к)

t вн – внутренняя температура

t н – внутренняя температура для отопления

Удельная характеристика q о представляет собой потери теплоты в 1м 3 здания в единицу времени при разности внутренней и наружной температуры.

Отопительные характеристики жилых зданий, Вт / (м 3 * к), можно посчитать по эмпирической формуле:

q о = , Вт /(м 3. к) (2)

где: а – постоянный коэффициент.

Для кирпичных зданий с толщиной стен в 2,5 кирпича 2-м остеклением окон, а = 1,9, для крупноблочных зданий 2,3-2,6.

Формула справедлива для климатических районов t н = 30 о С

Для зданий, расположенных в других климатических районах.

q о = (1,3 + 0,01 t вн) q о, Вт /(м 3. к) (3)

где: t н – температура от -30 о С.

Более точно теплопотери помещения можно подсчитать пользуясь предложенным профессором Н.С.Ермолаевым:

q о = a . , Вт /(м 3. к) (4)

где: а = 1,06-1,08 – коэффициент, учитывающий дополнительные теплопотери вертикаль-

ными ограждениями из-за обдувания ветром

Р – периметр стен здания, м;

S – площадь пола здания, м 2 ;

Коэффициент остекления стен;

к с m , к ос m , к по m , к пол – коэффициенты теплопередачи стен, остекления, потолка, пола. Вт/(м 3. к);

n nom , n no л – поправочные коэффициенты на расчетный период температур пола, потолка;

Н – высота здания.

Расход тепла на вентиляцию.

Основная задача вентиляции – создать в помещении воздухообмен, при котором загрязненный вредными выделениями воздух удаляется и заменяется чистым.

Расход тепла на вентиляцию равен:

Q в = q в V (t в – t н), кВт (5)

q в – удельный расход теплоты на вентиляцию к Вт / (м 3 * к),

q в = m . C v , Вт / (м 3. к) (6)

где: m – краткость обмена воздуха в помещении;

Справочные значения;

V n –объем вентилируемого помещения м 3 ;

V в – расход вентилируемого воздуха, м 3 /с;

С v – объемная теплоемкость воздуха.

Расход тепла на ГВС.

а) жилых зданий

б) в общественных зданиях и коммунальных предприятиях

в) промышленных зданий

Особенностью данного вида потребителя является непосредственное использование горячей воды. В открытых системах используют горячую воду, полученную непосредственно путем нагрева водопроводной воды в поверхностных подогревателях.

Расход на ГВС:

Q гв = а. m . c (t г – t х), кВт (7)

где: а – норма расхода горячей воды в литрах при температуре 65 0 С на жителя

в сутки или на единицу измерения;

m – количество жителей в здании или количество единиц измерений отне-

сенное к суткам;

с – теплоемкость воды кДж/(кг. к) 4,19 кДж/(кг. к);

t г – температура горячей воды не должна превышать +75 о С, min t не ниже

t х – температура холодной воды: зимой + 5 о С, летом +15 о С.

Для проектирования и эксплуатации систем теплоснабжения необходимо знать расчетный часовой расход тепла на ГВС, который представляет собой расход теплоты за 1ч максимальной нагрузки.

а) для жилых зданий расчетные расходы ГВС:

Q , кВт (8)

где: R – коэффициент часовой неравномерности потребления ГВС в зависимости от

количества жителей;

m – количество жителей.

б) для бань, прачечных и общественных предприятий.

Q = m . a (t г – t х) , кВт (9)

где: m – пропускная способность в час.

m = 2,2 . N . Р

где: N – количество посадочных мест;

Р – количество посадок в час (обычно 2-3 посадки).

Вентиляция.

Основная задача вентиляции – создать в помещении воздухообмен, при котором загрязненный вредными выделениями воздух удаляется и заменяется чистым, свежим, что обеспечивает необходимые гигиенические условия.

Потребителями теплоты в отопительный период являются приточные системы вентиляции, подающие в помещение наружный воздух. Теплопотребление на вентиляцию жилых зданий невелико; оно составляет не более 10% расхода теплоты на отопление и обычно учитывается величиной удельной теплопотери здания q о.

В зданиях, где расположены коммунальные предприятия, общественно-культурные учреждения, в цехах промпредприятий, расход теплоты на вентиляцию составляет значительную долю общего теплопотребления.

Расход теплоты на вентиляцию Q в, кВт, можно определить по формуле:

Q в = V в с в (t пр – t нач), кВт (10)

где: V в - расход вентиляционного воздуха, м 3 /с;

с в - объемная теплоемкость воздуха, равная 1,26 кДж/(м 3. К);

t пр и t нач -температуры воздуха -приточного, подаваемого в помещение и пе

ред калорифером, о С.

Расход вентиляционного воздуха определяют по количеству вредных выделений в помещении:

При газовыделениях:

V в = , м 3 /с (11)

При влаговыделениях:

V в = , м 3 /с (12)

где: V в -расход вентиляционного воздуха, м 3 /с;

V г - газовыделения в помещении, л/с;

W - влаговыделения в помещении, кг/с;

Плотность воздуха кг/м 3 ;

d в d пр - влагосодержание удаленного и приточного воздуха кг/кг;

k о -концентрация газов в приточном воздухе, л/м 3 ;

k д -предельно допустимая концентрация газа в удаленном воздухе, л/м 3 .

В приближенных расчетах величину К в определяют по кратности обмена воздуха в помещении

где: V n -объем вентилируемого помещения, м 3 ;

V в = m . V n , м 3

Значения кратности обмена m приводятся в справочной литературе. Для общеобменной приточной вентиляции можно принимать, что температура воздуха, подаваемого в помещение, равна усредненной внутренней температуре, t пр = t в и температура воздуха перед калорифером соответствует температуре наружного воздуха, t нач =t н.

Следовательно, можно записать:

Q в = m . V n . с u . (t в - t в), кВт (13)

С другой стороны, расход теплоты на вентиляцию равен:

Q в = q в. V . (t в - t в), кВт (14)

где: V – наружный объем здания, м 3 ;

q в – удельный расход теплоты на вентиляцию, кВт/(м 3. К).

q в =m . с u , кВт/(м 3. К) (15)

Кратность обмена воздуха m, а следовательно, и величина удельной вентиляционной характеристики здания q в зависит от назначения помещения и определяется СНиП.

Для конкретного здания расход теплоты на вентиляцию зависит только от наружной температуры. Следовательно, график Q о = f(t н) может быть построен по двум точкам:

1. t н = t вн; Q в = 0

2. t н = t нв; Q в = Q в макс

Ведет к некоторому снижению качества вентиляции помещения при низких наружных температурах. Поэтому при вентиляции ряда производственных помещений с вредны

Рисунок 2- Часовой график вентиляционной нагрузки

Из графика на рис.2 видно, что по мере понижения наружной температуры расход теплоты не вентиляцию увеличивается и достигает максимального значения при t н = t вн, а затем остается постоянным за счет рециркуляции части воздуха. Безусловно, рециркуляция ми выделениями рециркуляция не допускается. В этом случае расчет вентиляционной установки ведется по расчетной наружной температуре для отопления. Характер суточного графика расхода теплоты на вентиляцию зависит от режима работы вентилируемого помещения, т.е. от того, используется ли оно круглосуточно или только часть суток. График продолжительности вентиляционной нагрузки строится так же, как и для отопительной нагрузки.

Горячее водоснабжение.

Горячая вода используется для хозяйственно-бытовых целей:

а) в жилых зданиях (умывальники, ванны и души);

б) в общественных зданиях и коммунальных предприятиях (детские ясли и сады, школы, спортивные базы, бани, прачечные, больницы, столовые и т.д.);

в) в промышленных зданиях (души, умывальники, столовые и т.д.).

Особенностью данного вида потребителя является непосредственное использование горячей воды. В так называемых открытых системах потребители используют непосредственно сетевую воду, поступающую от источника теплоснабжения (ТЭЦ, котельной) В закрытых системах на разбор используется вторичная горячая вода, полученная непосредственно у потребителя путем нагрева водопроводной воды в поверхностных подогревателях. В этом случае охлажденная сетевая вода возвращается обратно к источнику теплоснабжения. Практически применяются и открытые и закрытые системы теплоснабжения; об области применения каждой из них будет сказано дальше. При проектировании и эксплуатации систем горячего водоснабжения необходимо учитывать, что горячая вода, подаваемая на хозяйственно-бытовые нужды, должна, как и питьевая вода, удовлетворять требованиям ГОСТ 2874-73. Вода питьевая.

Среднесуточный расход теплоты на бытовое горячее водоснабжение жилых, общественных и промышленных зданий или группы однотипных зданий определяется по формуле:

Q гв = a . m . c . (t г -t х) , кДж (16)

где: Q гв - расход теплоты, кДж/сут;

а -норма расхода горячей воды в литрах (кг) при температуре 65 о С на жителя

в сутки или на единицу измерения (1 обед, 1 кг сухого белья, 1 посетитель и

т.д.),принимается согласно СНиП П-34-76 (табл.1);

m - количество жителей в здании или количество единиц измерений, отнесенное к суткам

(кг белья, обедов, посетителей, учащихся и т.д.);

с - теплоемкость воды, кДж/(кг-К);

t х – температура холодной (водопроводной) воды, при отсутствии точных данных прини

мают: зимой t х = +5 о С, летом t х = +15 о С;

t г -температура горячей воды в соответствии с п.3.7 СНиП 11-34-76, максимальная темпе-

ратура воды в водонагревателях систем горячего водоснабжения не должна превышать

75 о С, а минимальная температура воды в точках водоразбора не должна быть ниже 50 о С;

расчетной величииной является t г = 55 о С.

Для проектирования и эксплуатации систем теплоснабжения необходимо знать расчетный часовой расход теплоты на горячее водоснабжение, который представляет собой расход теплоты за 1 ч максимальной нагрузки в предвыходные дни.

Таблица 1- Расчетные нормы потребления горячей воды и теплоты на горячее водоснабжение

Примечание. Нормы для прачечных приведены из расчета 1 кг белья.

Расчетные расходы теплоты на горячее водоснабжение, Вт, можно определить по следующим формулам:

а) для жилых зданий:

Q , (17)

где k – коэффициент часовой неравномерности потребления горячей воды в соответствии с табл.10-4; m – число жителей.

б) для бань, прачечных и предприятий общественного питания.

При наличии баков-аккумуляторов необходимо число часов их зарядки в смену или в сутки. Суточные графики горячего водоснабжения в зависимости от конкретных местных условий имеют самый разнообразный характер.

Таблица-2 Значение коэффициента k часовой неравномерности потребления горячей воды в жилых зданиях

Это определяется тем, что расход теплоты на горячее водоснабжение зависит не от одного, а от нескольких разнообразных факторов, таких как состав населения, планировка квартир и степень оборудования их ваннами и душами, режим работы промышленных предприятий и коммунально-бытовых предприятий (бани, прачечные, столовые) и т.д.

В жилых зданиях расход горячей воды обычно резко возрастает в вечерние часы, а на промышленных предприятиях – в конце рабочих смен. Большая неравномерность суточного графика приводит к значительному удорожанию как абонентских схем горячего водоснабжения, так и всей системы теплоснабжения, так как расчет приходится вести на максимальную (расчетную) часовую нагрузку, которая является, как правило, непродолжительной (1,5-2ч). Расчетную нагрузку можно уменьшить путем установки аккумуляторов теплоты.

Лекция №2

Лекция №3

ИСТОЧНИКИ ТЕПЛОСНАБЖЕНИЯ

Лкция №4

Лекция №5

Лекция №6

Пьезометрический график

К водяным тепловым сетям присоединены отопительные си­стемы зданий различного назначения, калориферные установки вентиляционных систем, системы горячего водоснабжения. Зда­ния могут быть расположены в разных точках рельефа мест­ности, отличающихся геодезическими отметками, и иметь различную высоту. Системы отопления зданий могут быть рассчи­таны на работу с различными температурами воды. В этих слу­чаях важно заранее определять давления или напоры в любой точке сети

График напоров строится для определения давлений в лю­бой точке сети и систем потребителей теплоты с целью проверки соответствия предельных давлений прочности элементов систем теплоснабжения. По графику напоров выбираются схемы при­соединений потребителей к тепловой сети и подбирается обо­рудование тепловых сетей (сетевые и подпиточные насосы, ав­томатические регуляторы давления, устанавливаемые на трубо­проводах). График строится при двух режимах работы системы теплоснабжения - статическом и динамическом

Статический ре­жим характеризуется давлениями в сети при неработающих сетевых, но включенных подпиточных насосах.

Динамический ре­жим характеризует давления, возникающие в сети и в системах теплопотребителей при работающей системе теплоснабжения, работающих сетевых насосах, при движении теплоносителя

Графики разрабатываются для основной магистрали тепло­вой сети и протяженных ответвлений. При использовании в по­строениях графика давлений в линейных единицах (метрах) гра­фик напоров получает название пьезометрического графика. Этот термин широко применяется в практике проектирования тепловых сетей

Пьезометрический график (график напоров) может быть по­строен только после выполнения гидравлического расчета тру­бопроводов - по рассчитанным падениям давления на участках сети. На графике в выбранном масштабе нанесены профиль трассы тепловой сети; высоты отопительных систем, присоеди­ненных к тепловой сети, условно равные высотам зданий; на­поры в любой точке сети при статическом и динамическом режимах

Условно принимают, что ось трубопроводов и геодезические отметки установки насосов и нагревательных приборов в пер­вом этаже зданий совпадают с отметкой земли. Высшее поло­жение воды в отопительной системе совпадает с верхней отмет­кой здания

График строят по двум осям - вертикальной и горизонталь­ной. На вертикальной оси откладывают напоры в любой точке сети, напоры насосов, профиль сети, высоты отопительных см­етем в метрах

Лекция 7

Лекция №8

Лекция №9

Система газоснабжения.

Газообразное топливо

Газообразное топливо

Газообразное топливо представляет собой смесь горючих и негорючих газов, содержащую некоторое количество примесей. К горючим газам относятся углеводороды, водород и оксид углерода. Негорючие компоненты - это азот, оксид (И) углерода и кислород- Они составляют балласт газообразного топлива, К примесям относят водяные пары, сероводород, пыль. Искусственные газы могут содержать аммиак, цианистые соединения, смолу и пр. Газообразное топливо очищают от вредных примесей. Содержание вредных примесей в граммах на 100 м газа, предназначенного для газоснабжения городов, по ГОСТ 5542 - 78, не должно превышать: сероводорода - 2, меркаптанозой серы - 3,6, механических примесей - 0,1. Отклонение теплоты сгорания от номинального значения не должно быть более

Для газоснабжения применяют, как правило, сухие газы. Содержание влаги не должно превышать количества, насыщающего газ при I- - 20 °С (зимой) и 35 °С (летом).. Если газ транспортируют на большие расстояния, то его предварительно осушают. Большинство искусственных газов.имеет резкий запах, что облегчает обнаружить утечки газа из трубопроводов и арматуры. Природный газ не имеет запаха. До подачи в сеть его одорируют, т. с. придают ему резкий неприятный запах, который ощущается при концентрации а воздухе, равной 1%.

Запах токсичных газов должен ощущаться при концентрации, допускаемой санитарными нормами. Сжиженный газ, используемый коммунально-бытовыми потребителями (по ГОСТ 20448-80*), не должен содержать сероводорода более 5 г на 100 м3 газа, а запах должен ощущаться при содержании з воздухе 0,5%. Концентрация кислорода в газообразном топливе не должна превышать 1 %. При использовании для газоснабжения смеси сжиженного газа с воздухом концентрация газа в смеси составляет не менее удвоенного верхнего предела воспламеняемости. Используя данные этих таблиц, можно рассчитать теплоту сгорания, плотность и другие характеристики газообразного топлива.

Контрольные задания для СРС:

2. Углубленное изучение темы.

Лекция №10

Лекция №11

Устройство газопроводов

Промышленные предприятия снабжают газом, как правило, по системам распределительных газопроводов высокого или среднего давления. При малых расходах газа, не нарушающих режим газоснабжения бытовых потребителей, возможно подключение предприятий к газопроводам низкого давления. Система газоснабжения предприятия состоит из ввода на территорию, межцеховых газопроводов, ГРП и ГРУ и внутрицеховых газопроводов. Ввод обычно делают подземным и размещают на нем главное отключающее устройство. Межцеховые газопроводы в зависимости от планировки предприятия, насыщенности его территории подземными и надземными коммуникациями, степени осушенности газа и ряда других факторов могут быть подземными, надземными и смешанными. На предприятиях чаще отдают предпочтение надземной прокладке межцеховых газопроводов, так как они в этом случае не подвержены подземной коррозии, более доступны для осмотра и ремонта, менее опасны при утечках газа и экономичнее подземных.

Подземные газопроводы прокладывают по нормам для уличных распределительных газопроводов. Надземные газопроводы прокладывают на опорах, эстакадах, по огнестойким наружным стенам и перекрытиям зданий с производствами неиожароопасной категории. Высота прокладки надземных газопроводов до низа трубы принимается, м, не менее: в местах прохода людей - 2,2; на участках без проезда транспорта и прохода людей - 0,6; над автодорогами - 4,5; над трамвайными путями и железными дорогами - 5,6-7,1. Под линиями электропередачи в зависимости от напряжения в них газопровод прокладывают на расстояниях от 1 до 6,5 м и заземляют.

На эстакадах или опорах допустима совместная прокладка газопроводов с другими трубопроводами (для пара, воды, воздуха, кислорода) при обеспечения возможности осмотра и ремонта каждого из трубопроводов. При совместной прокладке трубопроводы агрессивных жидкостей должны располагаться на эстакадах ниже газопроводов на 250 мм. Допускается крепление к газопроводам низкого и среднего давлений других газопроводов или трубопроводов, если позволяет несущая способность труб и опорных конструкций.. При пересечениях надземных газопроводов с другими трубопроводами расстояние между ними принимают: при диаметре газопровода до 300 ми - не менее диаметра газопровода, но не менее 100 мм; при диаметре газопровода свыше 300 мм - не менее 300 мм.

Контрольные задания для СРС:

Самостоятельная работа студентов:

1. Анализ пройденного материала.

2. Углубленное изучение темы.

Лекция №12

Лекция №13

Лекция №14

Лекция №15

КОНСПЕКТ ЛЕКЦИЙ

Дисциплина STGS 5307 «Системы тепло и газоснабжения»

Модуль STT 5 «Системы тепло и топливоснабжения»

Специальность 6М071700 – «Теплоэнергетика»

Факультет энергетики, автоматизации и телекоммуникации

Кафедра «Энергетические системы»

Лекция №1

СИСТЕМЫ ТЕПЛОСНАБЖЕНИЯ

Потребители тепловой энергии

Тепловое потребление - это использование тепловой энергии для разнообразных коммунально-бытовых и производственных целей.

Виды теплопотребления: отопление; вентиляция и кондиционирование воздуха; горячее водоснабжение (ГВС); теплотехническое потребление.

IV - потребитель (жилые помещения)

Виды теплоносителей:

1. Горячая вода - самый распространенный дешевый вид теплоносителя подходит для отопления, вентиляции, технологических нужд потребителей.

Недостаток: перекачка воды дороже.

2. Пар - для технологических нужд, технологических

процессов, непригоден для ГВС

3. Горячий воздух - для технических нужд и процессов, непригоден для ГВС.

4. Электроэнергия - подвод электричества в районы, отдаленные от воды теплоснабжение идет электричеством.

Потребителей теплоты делят на две группы: сезонные потребители; круглогодовые потребители

Сезонные потребители используют теплоту не круглый год, а только в течение какой-то части сезона, расход теплоты зависят от климатологических условий (температура наружного воздуха, солнечного излучения, скорости и направления ветра, влажности воздуха).

Сезонными потребители: отопление; вентиляция (с подогревом воздуха в калорифере); кондиционирование воздуха.

Расход теплоты в течение суток у сезонных потребителей мал, поэтому суточный график расхода теплоты сезонных потребителей постоянен.

Годовой график сезонных потребителей резкопеременный, наибольший расход теплоты в самые холодные месяцы (декабрь, январь), значительно меньший расход в начале и в конце отопительного сезона и нулевой расход в летний период,

Б) круглогодовые потребители используют теплоту в течение всего года. К этой группе относятся: технологические потребители теплоты; ГВС коммунально-бытовых потребителей.

Расход теплоты зависит от технологии производства, вида выпускаемой продукции, режима работы предприятия, типа оборудования, мало влияют климатические условия.

Круглогодовые потребители имеют переменный суточный график и постоянный годовой график потребления теплоты.

Безразмерный суточный график расхода тепла на ГВС жилого дома.

Существует два основных вида источников тепловой энергии (теплоносители - пар и горячая вода): котельные и ТЭЦ.

Если ТЭЦ является источником и тепловой и электрической энергии, то котельная вырабатывает только теплоту.

Котельная - это совокупность устройств, состоящая из котлов, вспомогательного оборудования и систем хранения, подготовки и транспорта топлива; подготовки, хранения и транспорта воды; золо- и шлакоудаления, а также сооружений для очистки дымовых газов и воды.

Главный элемент любого источника тепловой энергии - котельная установка, служащая для выработки пара или горячей воды. Котельная установка - это совокупность котла и вспомогательного оборудования. Котел -это конструктивно объединенный в одно целое комплекс устройств для получения пара или нагрева воды под давлением за счет тепловой энергии от сжигания топлива. Котлы подразделяются на паровые, водогрейные и паро - водогрейные.

Паровые котлы делятся на энергетические и котлы промышленной теплоэнергетики.

Энергетические котлы входят в состав тепловых электростанций и служат для получения перегретого водяного пара различных давлений и температур. Котлы промышленной теплоэнергетики служат для выработки насыщенного или перегретого пара низких и средних параметров. Этот пар используется либо в качестве технологического в производственных процессах предприятия, либо для приготовления горячей воды на нужды отопления, вентиляции, кондиционирования и горячего водоснабжения (ГВС).

Водогрейные котлы могут устанавливаться как на ТЭЦ, так и в котельных. Нагретая в них вода используется для тех же нужд.

Паровые котлы классифицируются по целому ряду признаков: конструкции, компоновке поверхности нагрева, производительности, параметрам пара, виду применяемого топлива, способу подачи и сжигания топлива, давлению дымовых газов.

Широко распространенными паровыми котлами являются вертикально-водотрубные котлы типа ДКВР, предназначенные для производства насыщенного пара давлением 1,4 МПа. Паропроизводительность их составляет 4; 6,5; 10; 20 т/ч при работе на твердом топливе и увеличивается в 1,3... 1,5 раза при работе на мазуте и газе. В настоящее время взамен ДКВР выпускается новая серия котлов производительностью от 2,5 до 25 тонн насыщенного или перегретого пара в час типов КЕ (для слоевого сжигания твердого топлива) и ДЕ (для работы на мазуте и газе).

В промышленной теплоэнергетике используются также паровые котлы П - образной компоновки типов ГМ50-14/250, ГМ50-1, БК375-39/440. Котлы типа ГМ могут работать на газе или мазуте, а БКЗ - также и на твердом топливе.

Паровые котлы различаются по конструкции, типу, производительности, параметрам пара и виду применяемого топлива.

Котлы малой (до 25 т/ч) и средней (160...220 т/ч) производительности с давлением пара до 4 МПа применяются в производственных и отопительных котельных для получения тепловой энергии в виде пара, идущего на технологические и отопительно - бытовые нужды.

Котлы производительностью до 220 т/ч имеют естественную циркуляцию без промежуточного перегрева пара и применяются на промышленных теплоэнергетических установках и ТЭЦ.

Водогрейные котлы предназначены для подготовки теплоносителя в виде горячей воды для технологического использования и бытового (отопление, вентиляция, кондиционирование и горячее водоснабжение).

Водогрейные котлы могут быть чугунными секционными и стальными водотрубными.

Чугунные секционные водогрейные котлы, например, типов КЧ-1, «Универсал», «Братск», «Энергия» и др. отличаются размерами и конфигурацией чугунных секций; мощность этих типов котлов - 0,12... 1 МВт.

Стальные водогрейные котлы имеют маркировку ТВГ, ПТВМ и КВ. Эти котлы отпускают воду с температурой до 150°С и давлением 1,1... 1,5 МПа, теплопроводностью от 30 до 180 Гкал/ч (35...209 МВт).

Котлы типа ПТВМ работают на газе и мазуте. Котлы типа KB являются унифицированными, предназначенными для работы на твердом, газообразном и жидком топливе. В зависимости от вида и способа сжигания топлива котлы KB делятся на КВТС (слоевые механизированные топки), КВТК (камерная топка для сжигания пылевидного топлива), КВГМ (для сжигания газа и мазута).

Теплоэлектроцентрали (ТЭЦ) - это станции комбинированной выработки электрической и тепловой энергии. Перегретый пар от котла подается на лопатки паровой турбины, закрепленные на роторе. Под воздействием энергии пара ротор турбины вращается. Этот ротор жестко связан при помощи соединительной муфты с ротором электрогенератора, при вращении которого вырабатывается электроэнергия. Пар, частично отдавший свою энергию в турбине, поступает потребителям либо для технологического использования, либо для нагрева воды, подаваемой потребителям.

На ТЭЦ применяются теплофикационные турбины с промежуточными теплофикационными отборами пара и турбины с противодавлением.

Тепловая схема ТЭЦ с противодавлением турбин показана на рис. 5, где: 1 - паровой котел, 2 - паровая турбина, 3. электрический генератор, 4 -потребитель теплоты, 5 - конденсатный насос, 6 - деаэратор, 7 - питательный насос.

Тепловая схема ТЭЦ с теплофикационными турбинами показана на рис. 6, где 1, 2, 3, 4 соответствуют обозначениям рис. 5, 5 - сетевой насос, 6-конденсатор, 7 - конденсатный насос, 8 - деаэратор, 9 - питательный насос.


Рисунок 5. Рисунок 6.

ТЭЦ с турбинами с противодавлением характеризуется тем, что производство электроэнергии здесь жестко связано с отпуском тепловой энергии, работа такой станции целесообразна только при наличии крупных потребителей теплоты с постоянным расходом ее в течение года, например, предприятий химической или нефтеперерабатывающей промышленности.

ТЭЦ с теплофикационными турбинами лишены этого недостатка и могут одинаково эффективно работать в широком диапазоне тепловых нагрузок. В тепловой схеме имеется конденсатор, а пар для подогрева воды отпускается из промежуточных ступеней турбины. Количество пара и его параметры регулируются, такие отборы называются теплофикационными в отличие от отборов, используемых для регенеративного подогрева питательной воды.

Для теплоснабжения городов и населенных пунктов используются отопительные котельные. Они бывают:

а) индивидуальные (домовые) или групповые для отдельных зданий или группы зданий. Теплопроизводительность таких котельных 0,5...4 МВт, вид котлов - водогрейные чугунные секционные, температура теплоносителя 95...115°С, КПД на каменном угле - 60-70%, на газе и мазуте- 80-85%;

б) квартальные для теплоснабжения квартала или микрорайона. Теплопроизводительность - 5...50 МВт, вид котлов - стальные паровые типа ДКВР или ДЕ и водогрейные типов КВТС, КВГМ, ТВГ, температура теплоносителя 13О...15О°С, КПД на каменном угле - 80-85%, на газе и мазуте - 85-92%;

в) районные для теплоснабжения одного или нескольких жилых районов. Теплопроизводительность - 70...500 МВт, вид котлов - стальные водогрейные типов ПТВМ, КВТК, КВГМ, температура теплоносителя 150...200°С, КПД на каменном угле - 80-88%, на газе и мазуте - 88-94%; или паровые типа ДКВР, ДЕ, ГМ-50.

Если котельная помимо нужд отопления и горячего водоснабжения (ГВС) I отпускает пар, то такая котельная называется промышленно-отопительной. Если котельная обеспечивает тепловой энергией в виде пара и горячей воды только нужды предприятия, то такая котельная называется промышленной. Котельные могут быть также только с водогрейными котлами (водогрейная котельная), только с паровыми котлами (паровая котельная) и с паровыми и водогрейными котлами (паро-водогрейная котельная). Пример отопительной котельной с паровыми котлами показан на упрощенной схеме рис. 7.

Рисунок 7.

Здесь 1 - питательный насос, 2 - паровой котел, 3-паровая редукционная установка (РУ), 4 - транспорт пара на технологические нужды предприятия, 5 - трубопровод подпитки тепловой сети, 6 - сетевой насос, 7 - теплообменники подогрева сетевой воды, 8 - тепловая сеть, 9 -деаэратор.

Тепловая сеть - это система прочно и плотно соединенных между собой участков стальных труб (теплопровод), по которым теплота с помощью теплоносителя (пара или, что чаще, горячей воды) транспортируется от источников (ТЭЦ или котельных) к потребителям теплоты.

Теплотрассы бывают подземные и надземные. Надземная прокладка тепловых сетей используется при высоком уровне грунтовых вод, плотной застройке районов прокладки теплотрассы, сильно пересеченном рельефе местности, наличии многоколейных железнодорожных путей, на территориях промышленных предприятий при наличии уже имеющихся энергетических или технологических трубопроводов на эстакадах или высоких опорах.

Диаметры трубопроводов тепловых сетей колеблются от 50 мм (распределительные сети) до 1400 мм (магистральные сети).

Около 10% тепловых сетей проложены надземно. Остальные 90% тепловых сетей проложены под землей. Около 4% проложены в проходных каналах и тоннелях (полупроходных каналах). Около 80% тепловых сетей проложены в непроходных каналах. Около 6% тепловых сетей уложены бесканально. Это самая дешевая укладка, но, во - первых, наиболее подверженная повреждениям и, во - вторых, она требует больших затрат при ремонте, особенно в условиях прокладки в кислых влажных грунтах Северо - Запада.

Тепловая энергия используется в процессе отопления, вентиляции, кондиционирования воздуха, горячего водоснабжения, пароснабжения.

Отопление, вентиляция, кондиционирование воздуха служат для создания комфортных условий для проживания и трудовой деятельности людей. Объем потребления тепловой энергии для этих целей определяется сезоном и зависит прежде всего от температуры наружного воздуха. Для сезонных потребителей характерным является относительно постоянный суточный расход теплоты и значительные его колебания по временам года.

Горячее водоснабжение - бытовое и технологическое - круглогодичное. Оно характеризуется относительно постоянным расходом в течение года и независимостью от температуры наружного воздуха.

Пароснабжение применяется в технологических процессах обдувки, пропарки, паровой сушки.

Отопление может быть местным или централизованным. Простейшим видом местного отопления является печь дровяного отопления, представляющая собой кирпичную кладку с топкой и системой газоходов для удаления продуктов сгорания. Выделенная в процессе сгорания теплота нагревает кладку, которая в свою очередь отдает теплоту помещению.

Местное отопление может осуществляться с помощью газовых отопительных приборов, имеющих малые размеры и вес и высокую эффективность.

Применяются также поквартирные системы водяного отопления. Источник теплоты - водонагревательный аппарат на твердом, жидком или газообразном топливе. Вода нагревается в аппарате, подается в отопительные приборы и, охладившись, возвращается в источник.

В системах местного отопления в качестве теплоносителя может использоваться воздух. Аппараты нагрева воздуха называются огневоздушными или газовоздушными агрегатами. В помещениях воздух подается вентиляторами через систему воздуховодов.

Большое распространение получило местное отопление электрическими приборами, выпускаемыми в виде переносных аппаратов различных конструкций. В некоторых случаях применяются стационарные электроотопительные приборы с вторичными теплоносителями (воздухом, водой).

На предприятиях в производственных помещениях местное отопление практически не используется, однако в административных и бытовых помещениях оно может применяться (в основном электроприборы).

Централизованной называется система отопления с одним общим (центральным) источником теплоты. Это система отопления отдельного здания, группы зданий, одного или нескольких кварталов и даже небольшого города (например, для отопления и горячего водоснабжения города Сосновый Бор Ленинградской области используется один источник теплоты - Ленинградская атомная электростанция).

Отличаются системы также видом передачи теплоты воздуху помещения: конвективное, лучистое; типом нагревательных приборов: радиаторные, конвертерные, панельные.

На рис. 8 показана двухтрубная система центрального водяного отопления, в которой вода поступает в нагревательные приборы по горячим стоякам, а отводится по холодным. В этом случае температура воды получается одинаковой во всех приборах, независимо от их расположения.

Обозначения рис. 8: 1 - котельная, 2 - главный стояк, 3 -нагревательные приборы, 4 - расширительный бачок, 5 - горячая магистраль, 6 - горячий стояк, 7 - холодный стояк, 8 - обратная магистраль.

Рисунок 8.

Однотрубная система центрального отопления (рис. 9) отличается от двухтрубной тем, что вода поступает в приборы отопления и отводится от них по одному и тому же стояку. Схема однотрубной системы может быть проточной (рис. 9, а), с осевыми замыкающими участками (рис. 9, б), со смешанными замыкающими участками (рис. 9, в). Обозначения те же, что на рис. 8.

Рисунок 9.

В проточных системах вода последовательно проходит через все приборы стояка, в системах с осевыми замыкающими участками вода частично проходит через приборы, частично через замыкающие участки, общие для двух приборов одного этажа, в системах со смешанными замыкающими участками вода ответвляется через два замыкающих участка.

В однотрубных системах температура воды снижается в направлении ее движения, то есть приборы верхних этажей горячее приборов нижних этажей. В этих системах несколько меньше расход металла на стояки, но требуется установка замыкающих участков.

Нагревательные приборы, устанавливаемые в обогреваемых помещениях, изготавливаются из чугуна и стали и имеют различные конструктивные формы от гладких труб, изогнутых или сваренных в блоки (регистры), до радиаторов, ребристых труб и отопительных панелей.

Вода для горячего водоснабжения должна быть такого же качества, как и питьевая, так как она используется для гигиенических целей. Температура воды должна быть в пределах 55.. .60°С.

Различают местное и центральное горячее водоснабжение. Местное горячее водоснабжение осуществляется с помощью водонагревательных аппаратов автономного и периодического действия с устройством распределения и разбора горячей воды. Водонагреватели работают на твердом топливе (угле, дровах), на газе и могут быть электрическими. По принципу действия водонагреватели делятся на емкостные и проточные.

Система центрального горячего водоснабжения применяется для объектов тепловой мощностью свыше 60 кВт. Система является частью внутреннего водопровода и представляет собой сеть трубопроводов, распределяющих горячую воду между потребителями.

Рисунок 10.

На рис. 10 показана система центрального горячего водоснабжения с рециркуляцией, где 1 - водонагреватель первой ступени, 2 - водонагреватель второй ступени, 3 - подающая магистраль, 4 - водоразборные стояки, 5 -циркуляционные стояки, 6 - отключающие вентили, 7 - циркуляционная магистраль, 8 - насос.

Циркуляционные стояки предотвращают остывание воды в стояках при отсутствии водоразбора. Источником тепла служат водонагреватели (бойлеры), располагаемые в тепловом вводе здания или в групповом тепловом пункте.

Вентиляция служит для введения чистого воздуха в помещение и удаления загрязненного с целью обеспечения требуемых санитарно-гигиенических условий. Подаваемый в помещение воздух называется приточным, удаляемый - вытяжным.

Вентиляция может быть естественной и принудительной. Естественная вентиляция происходит под действием разности плотностей холодного и теплого воздуха, его циркуляция идет либо по специальным каналам, либо через открытые форточки, фрамуги и окна. При естественной вентиляции напор невелик и соответственно мал воздухообмен.

Принудительная вентиляция осуществляется с помощью вентиляторов, которые подают воздух и удаляют его из помещения с высокой эффективностью.

По виду организации воздушного потока вентиляция бывает общеобменной и местной. Общеобменная обеспечивает обмен воздуха во всем объеме помещения, а местная - в отдельных частях помещения (на рабочих местах).

Система вентиляции, только удаляющая воздух из помещения, называется вытяжной, система вентиляции, только подающая воздух в помещение, называется приточной.

В жилых домах применяется, как правило, общеобменная естественная вытяжная система вентиляции. Наружный воздух поступает в помещения путем инфильтрации (через неплотности в ограждениях), а загрязненный внутренний воздух удаляется через вытяжные каналы здания. Потери тепловой энергии от поступления холодного наружного воздуха восполняются системой отопления и составляют величину 5.. .10% нагрузки отопления в зимний период.

В общественных и производственных зданиях обычно устраивается приточно-вытяжная принудительная вентиляция, причем расход тепловой энергии учитывается отдельно.

Кондиционирование воздуха - это придание ему заданных свойств независимо от наружных метеорологических условий. Это обеспечивается специальными аппаратами - кондиционерами, которые очищают воздух от пыли, подогревают его, увлажняют или осушают, охлаждают, перемещают, распределяют и автоматически регулируют параметры воздуха.

Широкое распространение получили системы кондиционирования для производственных помещений на приборостроительных, радиоэлектронных, пищевых, текстильных предприятиях, к воздушной среде которых предъявляются высокие требования.

Основная задача кондиционера - термовлажностная обработка воздуха: зимой воздух следует подогреть и увлажнить, летом - охладить и осушить.

Воздух нагревается в калориферах, охлаждается в поверхностных или контактных охладителях, аналогичных по устройству калориферам, но в трубах охлаждения циркулирует холодная вода или хладоноситель (аммиак, фреон).

Осушение воздуха получается в результате контакта с поверхностью охладителя, температура которого ниже точки росы воздуха - на этой поверхности выпадает конденсат.

Для орошения воздуха используются форсунки подачи воды или смоченные поверхности с лабиринтными ходами.

А. В. Богданов , начальник отдела ГУ «Кузбасский центр энергосбережения»; г. Кемерово

Развитие рыночных отношений в области энергетики сопровождается обострением взаимоотношений между потребителями энергоресурсов и энергоснабжающими организациями (ЭСО). Имеет место нарастающий конфликт интересов, характеризующийся тем, что одни - потребители - не могут жить по-старому, а другие - ресурсоснабжающие организации - не могут перестроиться и перейти на новые условия отношений. Это обусловлено, с одной стороны, имеющимися недостатками нормативно-правовой базы, с другой стороны - закостенелостью самих энергоснабжающих организаций. Необходимо сразу же оговориться, что все сказанное в настоящей статье относится не ко всем ЭСО, а определено как обобщенная тенденция в целом. Эта закостенелость выражается прежде всего в диктате ЭСО по отношению к потребителям, что является следствием их монопольного положения.

Что же касается нормативно-правовой базы, то во многом утеряна даже та ее четкость и ясность, которая была еще в недалеком прошлом. Отменены правила пользования электрической и тепловой энергией, а разработанные вместо них правила электроснабжения и правила теплоснабжения так и не были приняты. С вводом в действие закона о техническом регулировании потеряли свою обязательность практически все СНиПы, их положения носят только рекомендательный характер. Правила и рекомендации, разработанные в свое время Госстроем, носят только ведомственный характер. Сложившаяся ситуация усугубляется еще и тем, что за последние 10-15 лет утеряна большая часть специалистов в области теплоснабжения. Старые кадры ушли, а новые на смену им так и не появились в силу отсутствия каких-либо стимулов. Особенно это актуально в коммунальной энергетике. Не только некому заниматься режимной наладкой котельного оборудования, тепловых сетей и систем теплопотребления, но и сами по себе эти понятия уже исчезают.

Потребители тепловой энергии свои отношения с ЭСО практически не изменили с прошлых времен: заключают договоры теплоснабжения, в которых не определены гидравлические режимы, параметры качества тепловой энергии и теплоносителя, которые должна обеспечить ЭСО; не определены в полной мере обязанности, а самое главное, ответственность ЭСО (при этом большую часть договора занимают обязанности и ответственность потребителя); персонал, обслуживающий системы теплопотребления, не имеет достаточной квалификации для этого, а самое важное - отсутствует полноценный контроль режимов теплопотребления, их анализ, анализ счетов за тепловую энергию, которые предъявляют ЭСО. Единственным продвижением вперед является установка коммерческого учета тепловой энергии и теплоносителя.

В результате имеют место отношения между ЭСО и потребителями тепловой энергии, при которых ЭСО предъявляют к потребителям требования, зачастую не подкрепленные никакими нормами и правилами, заставляя их оплачивать не потребленную (некачественную) тепловую энергию и теплоноситель, нести необоснованные затраты на выполнение различных условий ЭСО. В этих отношениях участвуют органы контроля и надзора. Но далеко не всегда их действия направлены на наведение порядка. Да и не во всех вопросах они могут разобраться, чему мешают собственные интересы, амбиции и недостаток знаний.

Отдельной, очень важной стороной в отношениях энергоснабжения являются проектные, монтажные, сервисные организации, и на них отражаются все проблемы, возникающие между ЭСО и потребителями энергоресурсов. Конечно, основная цель этих организаций - получение прибыли от своей деятельности. Все понимают, что это возможно только при грамотном, добросовестном выполнении своей работы. Но как это обеспечить, если находишься между трех огней? С одной стороны, надо сделать все в соответствии с нормами и правилами для потребителя, с другой стороны, это надо доказать ЭСО и надзорным органам, которые выдвигают свои требования. И чтобы не поссориться, иногда приходится соглашаться с ними вопреки требованиям правил и интересам потребителя, иначе в следующий раз не согласуют проект, выбор прибора учета, запретят или не допустят в эксплуатацию системы теплопотребления и учета и т. д.

До 2003 года все разногласия между потребителями, ЭСО, проектными, монтажными, сервисными организациями решались органами Госэнергонадзора. Однако Постановлением Правительства Госэнергонадзор был ликвидирован. Вновь созданной Федеральной службе по экологическому, технологическому и атомному надзору (Ростехнадзор) в соответствии с Постановлением Правительства от Госэнергонадзора перешла лишь одна функция - контроль безопасности в электроэнергетике. Таким образом, в настоящее время законодательно не определена государственная надзорная структура, осуществляющая надзорные функции в области теплоснабжения - контроль за системами теплоснабжения и теплопотребления (в том числе и котельных, за исключением котлов, работающих под давлением свыше 0,7 МПа и температурой выше 115 °С), узлами учета тепловой энергии и теплоносителя на источниках, экспертизу и согласование проектов, допуск в эксплуатацию новых и реконструированных объектов, допуск на отопительный сезон систем теплопотребления, обучение и проверку знаний персонала, обслуживающего тепловые энергоустановки. Все это в условиях относительной безграмотности потребителей в вопросах энергообеспечения (конечно же, не всех) приводит к определенному хаосу и позволяет ЭСО диктовать свои условия потребителям.

Рассмотрим некоторые, наиболее остро стоящие ситуации.

Энергосбыт одной из энергоснабжающих организаций не дает разрешение потребителям на включение систем теплопотребления на отопительный сезон без предъявления из управления тепловых сетей этой же энергоснабжающей организации документа об оплате услуг по опрессовке системы теплопотребления. Эту ситуацию трудно описать словами. Оказывается, что потребитель имеет договор теплоснабжения с Энергосбытом, который заставляет его оплатить тепловым сетям, с которыми у потребителя нет договора теплоснабжения, услугу по опрессовке, которую тепловые сети не оказывали и не собирались оказывать, о чем свидетельствует бланк договора на оказание услуг, предложенный этой организацией. В соответствии с этим договором потребитель САМ должен «произвести опрессовкусогласно требованиям действующих норм и правил» и за это заплатить тепловым сетям, а исполнитель (т. е. тепловые сети) обязан только «направить своего представителя для присутствия во время проведения опрессовки и оформления соответствующего акта». При этом не принимается во внимание, что потребитель, в соответствии с требованиями Правил технической эксплуатации тепловых энергоустановок, предварительно уведомив Энергосбыт, уже самостоятельно произвел промывку и опрессовку своих систем теплопотребления и составил акт, который был представлен Энергосбыту.

Надо заметить, что в соответствии с указанными Правилами раньше контроль за опрессовкой и промывкой систем теплопотребления осуществлял Госэнергонадзор. Энергоснабжающие организации должны осуществлять контроль только «за соблюдением потребителем режимов теплопотребления и состоянием учета энергоносителей» (п. 9.1.56.). При помощи специалистов ГУ «Кузбасский центр энергосбережения» к тем потребителям, которые обратились за помощью, требования Энергосбыта по оплате тепловым сетям за опрессовку были сняты.

Похожая ситуация имеет место и с допуском в эксплуатацию (в том числе и с ежегодным) систем теплопотребления и узлов учета тепловой энергии и теплоносителя. Например, потребитель приглашает представителя энергоснабжающей организации для допуска в эксплуатацию узла учета тепловой энергии, предъявляет всю требуемую правилами документацию. В соответствии с требованиями Правил учета тепловой энергии и теплоносителя оформляется акт допуска, который подписывается представителем энергоснабжающей организации. Дальше этот акт должен быть утвержден руководителем энергоснабжающей организации. Но этого не происходит до тех пор, пока потребитель не заплатит за допуск. В результате ЭСО предъявляет этому потребителю требования по оплате за тепло и воду, как бесприборнику.

При этом п.7.5. указанных Правил гласит, что «узел учета потребителя считается допущенным к ведению учета полученной тепловой энергии и теплоносителя после подписания Акта представителем энергоснабжающей организации и представителем потребителя, учет тепловой энергии и теплоносителя на основе показаний приборов узла учета потребителя осуществляется с момента подписания Акта о его приемке в эксплуатацию». Имеется разъяснение Региональной энергетической комиссии о том, что «все расходы по производству, передаче и сбыту электрической и тепловой энергии включаются в необходимую валовую выручку энергоснабжающей организации.

Учитывая, что допуск приборов учета энергии в эксплуатацию является неотъемлемым элементом сбытовой деятельности ЭСО, взимание ею дополнительных средств за эти услуги является неправомерным, а выставление организацией, осуществляющей регулируемую государством деятельность, счетов за эту работу по произвольным (неутвержденным в установленном законодательством порядке) тарифам является нарушением государственной дисциплины цен.

Еще одна острая проблема возникла между энергоснабжающими организациями и проектными и монтажными организациями. Одна из энергоснабжающих организаций не принимает к рассмотрению и не согласовывает проекты узлов учета и регулирования теплопотребления без предоставления проектировщиками удостоверения о проверке знаний в органах Ростехнадзора, при том что проектные организации имеют лицензии на право проведения этих работ, полученные в установленном законодательством порядке. Это требование обосновывалось письмом из управления Ростехнадзора по Кемеровской области, подписанным одним из рядовых инспекторов. Представители Ростехнадзора утверждают, что они в соответствии с Правилами технической эксплуатации тепловых энергоустановок имеют все полномочия осуществлять контроль и надзор за системами теплопотребления, осуществлять проверку знаний персонала, обслуживающего теплопотребляющие установки и котельные, а также у проектных и монтажных организаций.

| скачать бесплатно Нормативно - правовые аспекты взаимоотношений потребителей тепловой энергии с энергоснабжающими организациями , Богданов А. В.,

Тепловая энергия используется в процессе отопления, вентиляции, кондиционирования воздуха, горячего водоснабжения, пароснабжения.

Отопление, вентиляция, кондиционирование воздуха служат для создания комфортных условий для проживания и трудовой деятельности людей. Объем потребления тепловой энергии для этих целей определяется сезоном и зависит, прежде всего, от температуры наружного воздуха. Для сезонных потребителей характерным является относительно постоянный суточный расход теплоты и значительные его колебания по временам года.

Горячее водоснабжение – бытовое и технологическое – круглогодичное. Оно характеризуется относительно постоянным расходом в течение года и не зависит от температуры наружного воздуха.

Пароснабжение применяется в технологических процессах обдувки, пропарки, паровой сушки.

Отопление, вентиляция и кондиционирование воздуха должны обеспечить в обслуживаемых зонах требуемые санитарно – гигиеническими нормами метеорологические условия и чистоту воздуха.

Условия теплового комфорта определяются температурой воздуха t в ° , С; относительной влажностью воздуха φ, %; скоростью движения воздуха w , м/с. Строительные нормы и правила (СниП) устанавливают следующие допустимые и оптимальные (в скобках) метеоусловия в обслуживаемых зонах жилых и общественных зданий для холодного и переходного периодов года:

a) t в = 18…22°С (20…22°С);

б) φ = 65% (45-30%);

в) w – не более 0,32 м/с (0,1…0,15 м/с).

Одной из главных характеристик закрытых помещений является температура воздуха в них, зависящая от температуры наружного воздуха, источников выделения теплоты (людей, тепловых приборов и оборудования), от теплозащитных свойств ограждений. Для создания необходимого температурного режима помещений служат системы отопления.

С учетом тепловыделения в помещениях расчетную температуру воздуха t в p принимают равной 18°С, а начало и окончание отопительного периода осуществляют при температуре наружного воздуха t =8°С. Продолжительность отопительного периода производственных помещений сокращается в зависимости от тепловыделений в них.

При естественной или принудительной механической вентиляции теплый воздух (с вредными примесями) удаляется из помещения, а вместо него поступает наружный холодный воздух. Теплоту, необходимую для нагрева наружного воздуха до расчетной температуры помещения, называют теплотой, расходуемой на вентиляцию.

Отопление

Отопление может быть местным или централизованным .

Простейшим видом местного отопления является печь дровяного отопления, представляющая собой кирпичную кладку с топкой и системой газоходов для удаления продуктов сгорания. Выделенная в процессе сгорания теплота нагревает кладку, которая в свою очередь отдает теплоту помещению.


Местное отопление может осуществляться с помощью газовых отопительных приборов, имеющих малые размеры и вес и высокую эффективность.

Применяются также поквартирные системы водяного отопления. Источник теплоты – водонагревательный аппарат на твердом, жидком или газообразном топливе. Вода нагревается в аппарате, подается в отопительные приборы и, охладившись, возвращается в источник.

В системах местного отопления в качестве теплоносителя может использоваться воздух. Аппараты нагрева воздуха называются огневоздушными или газовоздушными агрегатами. В помещениях воздух подается вентиляторами через систему воздуховодов.

Большое распространение получило местное отопление электрическими приборами, выпускаемыми в виде переносных аппаратов различных конструкций. В некоторых случаях применяются стационарные электроотопительные приборы с вторичными теплоносителями (воздухом, водой).

На предприятиях в производственных помещениях местное отопление практически не используется, однако в административных и бытовых помещениях оно может применяться (в основном электроприборы).

Централизованной называется система отопления с одним общим (центральным) источником теплоты. Это система отопления отдельного здания, группы зданий, одного или нескольких кварталов и даже небольшого города.

Отличаются системы также видом передачи теплоты воздуху помещения: конвективное, лучистое; типом нагревательных приборов: радиаторные, конвертерные, панельные.

Однотрубная система центрального отопления (рис. 26) отличается от двухтрубной тем, что вода поступает в приборы отопления и отводится от них по одному и тому же стояку. Схема однотрубной системы может быть проточной (рис. 26, а), с осевыми замыкающими участками (рис. 26, б), со смешанными замыкающими участками (рис. 26, в). Обозначения те же, что на рис.25.

В проточных системах вода последовательно проходит через все приборы стояка, в системах с осевыми замыкающими участками вода частично проходит через приборы, частично через замыкающие участки, общие для двух приборов одного этажа, в системах со смешанными замыкающими участками вода ответвляется через два замыкающих участка.

В однотрубных системах температура воды снижается в направлении ее движения, то есть приборы верхних этажей горячее приборов нижних этажей. В этих системах несколько меньше расход металла на стояки, но требуется установка замыкающих участков.

Нагревательные приборы, устанавливаемые в обогреваемых помещениях, изготавливаются из чугуна и стали и имеют различные конструктивные формы от гладких труб, изогнутых или сваренных в блоки (регистры), до радиаторов, ребристых труб и отопительных панелей.

Горячее водоснабжение

Вода для горячего водоснабжения должна быть такого же качества, как и питьевая, так как она используется для гигиенических целей. Температура воды должна быть в пределах 55…60°С.

Различают местное и центральное горячее водоснабжение. Местное горячее водоснабжение осуществляется с помощью водонагревательных аппаратов автономного и периодического действия с устройством распределения и разбора горячей воды. Водонагреватели работают на твердом топливе (угле, дровах), на газе и могут быть электрическими. По принципу действия водонагреватели делятся на емкостные и проточные.

Система центрального горячего водоснабжения применяется для объектов тепловой мощностью свыше 60 кВт. Система является частью внутреннего водопровода и представляет собой сеть трубопроводов, распределяющих горячую воду между потребителями.

Циркуляционные стояки предотвращают остывание воды в стояках при отсутствии водоразбора. Источником тепла служат водонагреватели (бойлеры), располагаемые в тепловом вводе здания или в групповом тепловом пункте.

Вентиляция

Вентиляция служит для введения чистого воздуха в помещение и удаления загрязненного с целью обеспечения требуемых санитарно-гигиенических условий. Подаваемый в помещение воздух называется приточным, удаляемый – вытяжным .

Вентиляция может быть естественной и принудительной. Естественная вентиляция происходит под действием разности плотностей холодного и теплого воздуха, его циркуляция идет либо по специальным каналам, либо через открытые форточки, фрамуги и окна. При естественной вентиляции напор невелик и соответственно мал воздухообмен.

Принудительная вентиляция осуществляется с помощью вентиляторов, которые подают воздух и удаляют его из помещения с высокой эффективностью.

По виду организации воздушного потока вентиляция бывает общеобменной и местной. Общеобменная обеспечивает обмен воздуха во всем объеме помещения, а местная – в отдельных частях помещения (на рабочих местах).

Система вентиляции, только удаляющая воздух из помещения, называется вытяжной, система вентиляции, только подающая воздух в помещение, называется приточной.

В жилых домах применяется, как правило, общеобменная естественная вытяжная система вентиляции. Наружный воздух поступает в помещения путем инфильтрации (через неплотности в ограждениях), а загрязненный внутренний воздух удаляется через вытяжные каналы здания. Потери тепловой энергии от поступления холодного наружного воздуха восполняются системой отопления и составляют величину 5…10% нагрузки отопления в зимний период.

В общественных и производственных зданиях обычно устраивается приточно-вытяжная принудительная вентиляция, причем расход тепловой энергии учитывается отдельно.

Кондиционирование воздуха

Кондиционирование воздуха – это придание ему заданных свойств независимо от наружных метеорологических условий. Это обеспечивается специальными аппаратами – кондиционерами, которые очищают воздух от пыли, подогревают его, увлажняют или осушают, охлаждают, перемещают, распределяют и автоматически регулируют параметры воздуха .

Широкое распространение получили системы кондиционирования для производственных помещений на приборостроительных, радиоэлектронных, пищевых, текстильных предприятиях, к воздушной среде которых предъявляются высокие требования.

Основная задача кондиционера – термовлажностная обработка воздуха: зимой воздух следует подогреть и увлажнить, летом – охладить и осушить.

Воздух нагревается в калориферах, охлаждается в поверхностных или контактных охладителях, аналогичных по устройству калориферам, но в трубах охлаждения циркулирует холодная вода или хладоноситель (аммиак, фреон).

Осушение воздуха получается в результате контакта с поверхностью охладителя, температура которого ниже точки росы воздуха – на этой поверхности выпадает конденсат.

Для орошения воздуха используются форсунки подачи воды или смоченные поверхности с лабиринтными ходами.

Баланс производства тепловой энергии в 2002 г. в Российской Федерации показан на диаграмме рис.1.

Рисунок 1.

Годовое теплопотребление жилищного фонда, объектов социального и коммунального назначения в 2003 г. составило порядка 2933 млн. ГДж (700 млн. Гкал).

Главным потребителем тепловой энергии в этом секторе ЖКХ является жилищный фонд - порядка 2095 млн. ГДж (500 млн. Гкал) в год или 71 % общего потребления.

Тепловая нагрузка системы теплоснабжения (тепловая нагрузка) - это суммарное количество теплоты, получаемой от источников теплоты, равное сумме теплопотреблений приемников теплоты и потерь в тепловых сетях в единицу времени.

Основными производителями и поставщиками тепловой энергии в ЖКХ являются специализированные предприятия коммунальной энергетики, находящиеся в ведении муниципалитетов и исполнительных органов власти субъектов регионов Российской Федерации. Предприятия коммунальной энергетики в 2003 г. обеспечивали отпуск порядка 2220 млн. ГДж (530 млн. Гкал) в год, что составило 64 % общей потребности жилищно-коммунальной и социальной сфер. Остальная часть тепловой энергии поставляется региональными акционерными обществами энергетики и электрификации, а также другими предприятиями и организациями министерств, ведомств, концернов, объединений.

Порядка 1477 млн. ГДж (352,4 млн. Гкал) в год предприятия коммунальной энергетики вырабатывают на собственных теплоисточниках (котельных) и около 964 млн. ГДж (230 млн. Гкал) покупают у других производителей с последующей передачей ее абонентам - потребителям по коммунальным распределительным

тепловым сетям.

Абонент (потребитель) - юридическое лицо, а также предприниматель без образования юридического лица, имеющие в собственности или на ином законном основании объекты и системы теплопотребления, которые непосредственно присоединены к системам коммунального теплоснабжения, заключившие с теплоснабжающей организацией в установленном порядке договор на отпуск (получение) тепловой энергии и (или) теплоносителей.

Объемы и структура производства тепловой энергии на источниках теплоты для теплоснабжения ЖКХ и объектов социальной сферы представлены в табл. 1. Основную технологическую структуру коммунального теплоснабжения формируют собственные домовые и групповые котельные (ГрКУ), квартальные (КТС) и районные (городские) тепловые станции (РТС) с тепловыми сетями от них, распределительные сети, а также многочисленные теплопотребляющие (абонентские) установки.

Таблица 1. Структура производства тепловой энергии

Источник теплоснабжения мощностью, МВт (Гкал/ч)

Производство тепловой энергии

Количество произведенной тепловой энергии, млн. ГДж (млн. Гкал)

Доля в общем объеме производства, %

Домовые котельные - до 3,5 (3)

Групповые котельные (ГрКУ) - от 3,5 до 23,3 (3-20)

Квартальные котельные (КТС) - от 23,3 до 116 (20-100)

Районные котельные (РТС) - более 116 (более 100)

Общий годовой расход топлива на производство тепловой энергии для ЖКК и объектов социальной сферы составляет порядка 150 млн. т условного топлива, в том числе в коммунальных котельных - 66 млн. т условного топлива. Структура производства тепловой энергии в коммунальных котельных по видам используемого топлива представлена в таблице 2.

Таблица 2. Структура производства тепловой энергии в коммунальных котельных по видам используемого топлива

Вид топлива

Число котельных, тыс. ед.

Произведено теплоты, млн. ГДж, (млн. Гкал)

Доля в общем производстве, %

Газообразное

Как следует из таблиц 1, 2, половина от общего числа котельных ЖКХ - 22,4 тыс. единиц, работают на твердом топливе и вырабатывают почти 35 % всей тепловой энергии, потребляемой жилищным фондом, оказывая значительную нагрузку (давление) на природную среду обитания людей. Здесь кроется существенный резерв для экологического оздоровления жилых микрорайонов путем замены многих мелких котельных централизованными источниками теплоснабжения или перевода их на экологически более «чистые» виды топлива - газовое, жидкое котельно-печное, а также нетрадиционные возобновляемые энергоресурсы (например, энергия солнца, волны, ветра, геотермальных источников и т.д.).

Решением Правительства РФ сельские системы теплоснабжения должны быть переданы на баланс и в эксплуатацию муниципальным образованиям местных администраций. Эта работа продолжается, и количество установок ЖКХ возрастает.