Как играть в судоку секреты. Пример решения проблем – самый сложный судоку

Как играть в судоку секреты. Пример решения проблем – самый сложный судоку
Как играть в судоку секреты. Пример решения проблем – самый сложный судоку

История игры

Числовую структуру придумали в Швейцарии еще в XVIII веке, на ее основе в XX веке был разработан числовой кроссворд. Однако в США, где непосредственно была придумана игра, она не получила большого распространения, в отличие от Японии, где головоломка не только прижилась, но и получила большую популярность. Именно в Японии она и приобрела привычное название «Судоку», и затем распространилась по миру.

Правила игры

Кроссворд имеет простую структуру: задается матрица из 9 квадратов, называемых секторами. Эти квадраты располагаются по три в ряду и имеют размер 3х3 клетки. Матрица Судоку выглядит как квадрат, состоящий из 3 строк и 3 столбцов, которые делят его на 9 секторов, содержащих по 9 клеток каждый. Часть клеток заполнена цифрами – чем больше цифр известно, тем проще головоломка.

Цель игры

Нужно заполнить все пустые клетки, при этом есть всего 1 правило: цифры не должны повторяться. Каждый сектор, строка и столбец должны содержать цифры от 1 до 9 без повторений. Лучше заполнять пустые клетки карандашом: так будет проще внести изменения в случае ошибки или начать заново.

Методы решения

Рассмотрим простой вариант судоку. Например, в секторе или строке осталась всего 1 пустая клетка, – логично, что в нее надо вписать то число, которого нет в числовом ряду.

Далее стоит изучить строки и столбцы, в которых есть одинаковые цифры в 2 секторах. Поскольку числа не должны повторяться, то можно проверить, в каких клетках может располагаться та же цифра в 3 секторе. Зачастую там остается только 1 клетка, в которую как раз и нужно вписать цифру.

Таким образом, часть поля кроссворда заполнится. Затем можно приступать к изучению строк. Допустим, в строке есть 3 свободных клетки, вам понятно, какие цифры должны быть туда вписаны, но неизвестно, куда конкретно. Нужно попробовать подстановку. Часто бывают варианты, когда в 2 других клетках цифра не может располагаться, потому что либо она есть в соответствующем столбце, либо в секторе.

Сложные судоку

В сложных судоку эти методы работают только наполовину, наступает момент, когда совершенно невозможно определить, в какую клетку вписывать число. Тогда нужно сделать предположение и проверить его. Если в строке, столбце или секторе есть 2 клетки, в которые одинаково возможно вписать цифру, то нужно вписать ее карандашом и следовать логике заполнения дальше. Если ваше допущение неверно, то в какой-то момент кроссворд покажет ошибку, и возникнет повтор цифр. Тогда становится очевидным, что цифра должна находиться во второй клетке, нужно вернуться назад и исправить ошибку. Лучше в таком случае использовать цветной карандаш, чтобы было проще найти момент, с которого нужно решать кроссворд заново.

Маленький секрет

Проще и быстрее решать судоку, если первоначально наметить карандашом, какие цифры могут быть в каждой клетке. Тогда не придется каждый раз проверять все секторы, и в процессе заполнения сразу будут очевидны те клетки, в которых остался только 1 вариант допустимой цифры.

Судоку – это не только увлекательная игра, которая позволяет скоротать время, это головоломка, которая развивает логическое мышление, способность удерживать большой объем информации и внимательность к деталям.

Эта стратегия решения судоку носит название “подсчета” потому, что вы должны “просчитать” все возможные значения для ячейки в надежде найти единственно возможное для нее число.

Так, на приведенном примере производим подсчет для ячейки Р4К4 (выделена цветом и помечена знаком вопроса).

Итак: 9 — есть в колонке, 8 — есть в блоке, 7 — есть в колонке, 6 — есть в строке, 5 — есть в блоке, 4 — есть в строке, 3 — есть в колонке, 2 — есть в блоке. Единственный возможный вариант — число 1.

2. Вычеркивание 1

Для конкретного числа (в данном случае — 5) находим ячейки, которые это число содержат.

Обратим внимание на блок 3 (выделен цветом). Нам известно, что строки и столбцы, содержащие число 5, в других ячейках его содержать не могут. Это позволяет нам выделить ячейки в блоке 3, которые не содержат число 5.

В одной из двух оставшихся ячеек (Р3К8) находится число 1.

Единственная ячейка, которая может содержать число 5 — Р3К7 — выделена цветом и помечена знаком вопроса.

В предыдущем варианте мы “вычеркивали” числа по трем линиям. Теперь приведем более простой пример — с двумя линиями.

3. Вычеркивание 2

“Обратный” вариант предыдущей стратегии. Если конкретное число содержится в блоке, то строки и столбцы в местах пересечения с блоком это же число содержать не могут.

Обратим внимание на ячейку Р8К6 (выделена цветом и помечена знаком вопроса).

На первый взгляд (используя стратегию подсчета) в ней могут быть расположены числа 6, 9, 5, 8.

Но, если мы обратим внимание на всю колонку 6, то придем к следующим выводам: 1) в ячейке Р5К6 числа 6 быть не может — есть в соответствующем ряду 5; 2) в ячейках Р2К6 и Р3К6 числа 6 быть не может — имеется соответственно в блоке 2. Итак, единственный возможный вариант — ячейка Р8К6.

4. Блокада 1

Иногда в процессе решения возникает ситуация, когда определенное число в блоке может быть расположено только в одном ряду (колонке) в пределах этого блока. Как следствие, это число не может находиться в других ячейках этого ряда (колонки) за пределами блока.

Расположение числа 7 в ячейке Р6К7 в дополнении к другим числам в блоке 4 дает нам два варианта расположения числа 7 в упомянутом блоке — ячейки Р4К3 и Р5К3.

Понятно, что в одной из этих ячеек обязательно должно находиться число 7. Как следствие, числа 7 не должно быть в остальных ячейках колонки 3.

5. Блокада 2

Обратный вариант предыдущей стратегии. Если определенное число в ряду или колонке может быть расположено только в пределах одного блока, то это же число не может находиться в других ячейках рассматриваемого блока.

Так, число 2 в колонке 7 может находиться только в ячейках Р7К7 и Р9К7. Обе ячейки расположены в блоке 9, значит, в других ячейках этого блока числа 2 быть не должно.

  • Tutorial

1. Основы

Большинство из нас, хабражителей, знает, что такое судоку . Не буду рассказывать про правила, а сразу перейду к методикам.
Для решения головоломки, не важно сложной или простой, изначально ищутся ячейки очевидные для заполнения.


1.1 «Последний герой»

Рассмотрим седьмой квадрат. Всего четыре свободных клетки, значит что-то можно быстро заполнить.
"8 " на D3 блокирует заполнение H3 и J3 ; точно также "8 " на G5 закрывает G1 и G2
С чистой совестью ставим "8 " на H1

1.2 «Последний герой» в строке

После просмотра квадратов на очевидные решения, переходим к столбцам и строкам.
Рассмотрим "4 " на поле. Понятно, что она будет где-то в строке A .
У нас есть "4 " на G3 , что зыкрывает A3 , есть "4 " на F7 , убирающая A7 . И ещё одна "4 " во втором квадрате запрещает её повтор на A4 и A6 .
«Последний герой» для нашей "4 " это A2

1.3 «Выбора нет»

Иногда есть несколько причин для конкретного расположения. "4 " в J8 будет отличным примером.
Синие стрелки показывают, что это последнее возможное число в квадрате. Красные и синие стрелки дают нам последнее число в столбце 8 . Зеленые стрелки дают последнее возможное число в строке J .
Как видим, выбора у нас нет, кроме как поставить эту "4 " на место.

1.4 «А кто, как не я?»

Заполнение чисел проще проводить вышеописанными методами. Однако проверка числа, как последнего возможного значения, тоже даёт результаты. Метод стоит применять, когда кажется, что все числа есть, но чего-то не хватает.
"5 " в B1 ставится исходя из того, что все числа от "1 " до "9 ", кроме "5 " есть в строке, столбце и квадрате (отмечено зеленым).

На жаргоне это "Голая одиночка ". Если заполнять поле возможными значениями (кандидатами), то в ячейке такое число будет единственным возможным. Развивая эту методику, можно искать "Скрытые одиночки " - числа, уникальные для конкретной строки, столбца или квадрата.

2. «Голая миля»

2.1 «Голые» пары
"«Голая» пара " - набор из двух кандидатов, расположенных в двух ячейках, принадлежащих одному общему блоку: строке, столбцу, квадрату.
Понятно, что правильные решения головоломки будут только в этих ячейках и только с этими значениями, в то время как все другие кандидаты из общего блока могут быть убраны.



В этом примере несколько «голых пар».
Красным в строке А выделены ячейки А2 и А3 , обе содержащие "1 " и "6 ". Я пока не знаю, как именно они расположены здесь, но я спокойно могу убрать все другие "1 " и "6 " из строки A (отмечено желтым). Также А2 и А3 принадлежат общему квадрату, поэтому убираем "1 " из C1 .


2.2 «Threesome»
«Голые тройки» - усложненный вариант «голых пар».
Любая группа из трех ячеек в одном блоке содержащая в общем три кандидата является «голой тройкой» . Когда такая группа нашлась, эти три кандидата могут быть убраны из других ячеек блока.

Комбинации кандидатов для «голой тройки» могуть быть такими:

// три числа в трех ячейках.
// любые комбинации.
// любые комбинации.


В этом примере все довольно очевидно. В пятом квадрате ячейки E4 , E5 , E6 содержат [5,8,9 ], [5,8 ], [5,9 ] соответственно. Получается, что в общем у этих трех ячеек есть [5,8,9 ], и только эти числа там могут быть. Это позволяет нам убрать их из других кандидатов блока. Этот трюк даёт нам решение "3 " для ячейки E7 .

2.3 «Великолепная четверка»
"«Голая» четверка" весьма редкое явление, особенно в полной форме, и все же дает результаты при обнаружении. Логика решения такая же как и у «голых троек» .

В указанном примере в первом квадрате ячейки A1 , B1 , B2 и C1 в общем содержат [1,5,6,8 ], поэтому эти числа займут только эти ячейки и никакие другие. Убираем подсвеченных желтым кандидатов.

3. «Все тайное становится явным»

3.1 Скрытые пары
Отличным способом раскрыть поле будет поиск скрытых пар . Этот метод позволяет убрать лишних кандидатов из ячейки и дать развитие более интересным стратегиям.

В этой головоломке мы видим, что 6 и 7 есть в первом и втором квадратах. Кроме этого 6 и 7 есть в столбце 7 . Комбинируя эти условия, мы можем утверждать, что в ячейках A8 и A9 будут только эти значения и все другие кандидаты мы убираем.


Более интересный и сложный пример скрытых пар . Синим выделена пара [2,4 ] в D3 и E3 , убирающая 3 , 5 , 6 , 7 из этих ячеек. Красным выделены две скрытые пары, состоящие из [3,7 ]. C одной стороны, они уникальны для для двух ячеек в 7 столбце, с другой стороны - для строки E . Выделеные желтым кандидаты убираются.

3.1 Скрытые тройки
Мы можем развить скрытые пары до скрытых троек или даже скрытых четверок . Скрытая тройка состоит из трех пар чисел, расположенных в одном блоке. Такие как , и. Однако, как и в случае с «голыми тройками» , в каждой из трех ячеек не обязательно должно быть по три числа. Сработают всего три числа в трех ячейках. Например , , . Скрытые тройки будут замаскированы другими кандидатами в ячейках, поэтому сначала надо убедиться, что тройка применима к конкретному блоку.


В этом сложном примере есть две скрытые тройки . Первая, отмеченная красным, в столбце А . Ячейка А4 содержит [2,5,6 ], A7 - [2,6 ] и ячейка A9 -[2,5 ]. Эти три ячейки единственные, где могут быть 2 ,5 или 6, поэтому только они там и будут. Следовательно убираем лишних кандидатов.

Вторая, в столбце 9 . [4,7,8 ] уникальны для ячеек B9 , C9 и F9 . Используя ту же логику, убираем кандидатов.

3.1 Скрытые четверки

Прекрасный пример скрытых четверок . [1,4,6,9 ] в пятом квадрате могут быть только в четырех ячейках D4 , D6 , F4 , F6 . Следуя нашей логике, убираем всеъ других кандидатов (отмеченых желтым).

4. «Нерезиновая»

Если любое из чисел появляется дважды или трижды в одном блоке (строке, столбце, квадрате), тогда мы можем убрать это число из сопряженного блока. Есть четыре вида сопряжения:

  1. Пара или Тройка в квадрате - если они расположены в одной строке, то можно убрать все другие такие же значения из соответствующей строки.
  2. Пара или Тройка в квадрате - если они расположены в одном столбце, то можно убрать все другие такие же значения из соответствующего столбца.
  3. Пара или Тройка в строке - если они расположены в одном квадрате, то можно убрать все другие такие же значения из соответствующего квадрата.
  4. Пара или Тройка в столбце - если они расположены в одном квадрате, то можно убрать все другие такие же значения из соответствующего квадрата.
4.1 Указавыющие пары, тройки

В качестве примера покажу эту головоломку. В третьем квадрате "3 " находится только в B7 и B9 . Следуя утверждению №1 , мы убираем кандидатов из B1 , B2 , B3 . Аналогично, "2 " из восьмого квадрата убирает возможное значение из G2 .


Особенная головоломка. Очень сложная в решении, но, если присмотреться, можно заметить несколько указывающих пар . Понятно, что не всегда обязательно находить их все, чтобы продвинуться в решении, однако каждая такая находка облегчает нам задачу.

4.2 Сокращаем несокращаемое

Эта стратегия включает в себя аккуратный анализ и сравнение строк и столбцов с содержимым квадратов (правила №3 , №4 ).
Рассмотрим строку А . "2 " возможны только в А4 и А5 . Следуя правилу №3 , убираем "2 " их B5 , C4 , C5 .


Продолжим решать головоломку. Имеем единственное расположение "4 " в пределах одного квадрата в 8 столбце. Согласно правилу №4 , убираем лишних кандитатов и, в добавок, получаем решение "2 " для C7 .


В этом мире существует огромное количество различных , которые помогут вам в развитии одного из важнейших органов — мозга. Разумеется, широко-известные японские головоломки судоку являются одними из них. С их помощью вы сможете изрядно “накачать извилины”, ведь помимо необходимости просчитывать огромное количество вариантов расположения чисел, вам также нужно уметь делать это на пару десятков ходов вперед. Одним словом, это настоящий рай, если вы хотите не дать своим нейронам “засохнуть”. И сегодня мы рассмотрим основные приемы, которые используют знатоки судоку. Это будет полезно как новичкам, так и давним фанатам этих головоломок. Ведь кому-то нужно сделать свои первые шаги в искусстве судоку, а кому-то повысить эффективность своих решений!

Правила

Если вы еще не знакомы с , то для начала вам стоит ознакомиться с правилами. Поверьте, они очень просты.

Игровое поле — это квадрат, который имеет размеры 9×9. При этом он разделен на меньшие квадраты с размерами 3×3. То есть, все поле состоит из 81 клетки.

Условие задачи — это те числа, которые уже расставлены в этих клетках.

Блок (блок ячеек) — малый квадрат, строка или строчка.

Что необходимо сделать: расставить все остальные цифры, соблюдая несколько правил. Во-первых, в каждом из маленьких квадратов не должно быть повторений. Во-вторых, во всех столбцах и строках также не должно быть повторений. То есть, каждое число должно встречаться лишь один раз в каждом из этих блоков. Для того, чтобы все стало еще понятнее, обратите внимание на решенный судоку:

Базовый способ решения

Как правило, если вы будете решать простые судоку, то все, что вам необходимо сделать — это расписать все возможные варианты для каждой из 81 клетки и постепенно вычеркивать неподходящие варианты. Это очень просто.

Но если вы перейдете на уровень выше, к более сложным судоку, то все становится интереснее. Часто будет так, что поставить новые цифры нет никакой возможности, и вам придется идти через предположения: “Пусть здесь стоит такое число”, после чего вам необходимо будет рассмотреть эту гипотезу и либо прийти к решению задачи, либо к противоречию своего предположения.

Но конечно, есть особые приемы, которые помогут делать все это более эффективно.

Приемы

1. Голые пары/тройки/четверки

Если у вас имеется две клетки в одном блоке (квадрат, строка или столбец), в которые можно поставить лишь 2 цифры, то очевидно, что эти цифры можно убрать из возможных вариантов для других клеток данного блока.


Более такого, такой трюк можно легко проделать и с тройками, и с четверками:

2. Скрытые пары

Очень полезный прием, в некотором роде, обратный голым парам. Если в каких-то двух клетках одного квадрата в “возможных вариантах” у вас есть цифры, которые больше нигде не повторяются (в рамках этого квадрата), то все остальные цифры из этих двух клеток можно убрать.

Для того, чтобы стало еще понятнее, обратите внимание на примеры (один простой и посложнее):

К счастью, это работает и для троек, и для четверок, но стоит упомянуть очень важную и очень крутую фишку. Не обязательно, чтобы в трех/четырех ячейках были одинаковые 3 цифры вида (a;b;c) (a;b;c) (a;b;c). Вам будет достаточно такого варианта: (a;b) (b;c) (a;c).

3. Безымянное правило

Если у вас есть пара или тройка в одном столбце/строке, которые при этом располагаются в одном квадрате, можете смело убрать эти цифры из других ячеек данного квадрата.

4. Указывающие пары

Если в одной строке/столбце в “возможных вариантах” есть две одинаковые цифры, то такие цифры можно убрать из соответствующего столбца/строки.

Временами это бывает очень полезно, особенно, если вы найдете несколько таких пар:

Конечно, при этом данные цифры должны отсутствовать в других ячейках квадрата, но согласно безымянному правилу, это не требуется.

Любите судоку и другие загадки, игры, головоломки и тесты, направленные на развитие различные аспектов мышления? Получите ко всем интерактивным материалам на сайте, чтобы развиваться эффективнее.

Заключение

Мы рассмотрели основные приемы, которые используются при решении судоку. Отмечу, что это лишь начало и в следующих статьях мы рассмотрим более сложные и более интересные фишки, благодаря которым решение таких задач станет еще интереснее и проще.

В качестве тренировки редакция 4brain предлагает вам ознакомиться с файлом , в котором содержатся судоку различного уровня сложности. Не пожалейте времени на тренировки, поскольку если вы уделите этому занятию достаточно времени, то в конце данного курса статей, поверьте мне, вы станете настоящим асом в решении японских головоломок.

Если у вас есть какие-то вопросы по данным методикам или же по судоку, которые мы прикладываем к статье, можете смело задавать их в комментариях!

Для тех, кому нравится решать загадки cудоку самостоятельно и неспешно, формула, позволяющая быстро вычислить ответы, может показаться признанием слабости или жульничеством

Но для тех, кому разгадывание судоку стоит слишком больших усилий, это может быть буквально идеальным решением.

Два исследователя разработали математический алгоритм, который позволяет решать судоку очень быстро, без предположений и перебора с возвратом.

Исследователи комплексных сетей Золтан Торожкай и Мария Эркси-Раваз из Университета Нотр-Дама также смогли объяснить, почему некоторые загадки судоку более сложные, чем другие. Единственный недостаток в том, что для того, чтобы понять, что они предлагают, нужна степень доктора математики.

Вы можете решить эту головоломку? Она создана математиком Арто Инкалой, и, как утверждают, это самая сложная судоку в мире. Фото с сайта nature.com

Торожкай и Эркси-Раваз начали анализировать судоку как часть своего исследования теории оптимизации и вычислительной сложности. Они говорят, что большинство любителей судоку используют для решения этих задач подход «грубой силы», основанный на технике предположения. Таким образом, любители судоку вооружаются карандашом и пробуют все возможные комбинации чисел, пока не будет найден правильный ответ. Этот метод неизбежно приведет к успеху, но он трудоемок и занимает много времени.

Вместо этого Торожкай и Эркси-Раваз предложили универсальный аналоговый алгоритм, который абсолютно детерминирован (не использует предположение или перебор) и всегда находит правильное решение задачи, причем довольно быстро.



Исследователи использовали «детерминированный аналоговый решатель», чтобы заполнить эту судоку. Фото с сайта nature.com

Исследователи также обнаружили, что время, которое требуется, чтобы решить головоломку с использованием их аналогового алгоритма, коррелируется со степенью сложности задачи, которая оценивается человеком. Это вдохновило их на то, чтобы развивать шкалу ранжирования для трудности загадки или проблемы.

Они создали шкалу от 1 до 4, где 1 - «легко», 2 - «средняя степень сложности», 3 - «сложно», 4 - «очень сложно». Для решения головоломки с рейтингом 2 требуется в среднем в 10 раз больше времени, чем для задачки с рейтингом 1. Согласно этой системе, самая сложная загадка из известных до сих пор имеет рейтинг 3.6; более сложные задачи судоку пока неизвестны.



Теория начинается с картографии вероятностей для каждого отдельного квадрата. Фото с сайта nature.com

«Я не интересовался судоку, пока мы не начали работать над более общим классом выполнимости Булевых проблем, - говорит Торожкай. - Так как судоку - часть этого класса, латинский квадрат 9-го порядка оказался для нас хорошим полем для испытаний, так я с ними и познакомился. Меня и многих исследователей, изучающих такие проблемы, захватывает вопрос, как далеко мы, люди, способны зайти в решении судоку, детерминировано, без перебора, который является выбором наугад, и, если догадка не верна, нужно вернуться на шаг или на несколько шагов назад и начать сначала. Наша аналоговая модель решения детерминирована: в динамике нет никакого случайного выбора или возвращения».



Теория хаоса: степень сложности загадок показывается здесь как хаотическая динамика. Фото с сайта nature.com

Торожкай и Эркси-Раваз полагают, что их аналоговый алгоритм потенциально подходит для применения к решению большого количества разнообразных задач и проблем в промышленности, информатике и вычислительной биологии.

Опыт исследования также сделал Торожкая большим любителем судоку.

«У моей жены и у меня есть несколько приложений судоку на наших iPhone, и мы, должно быть, сыграли уже тысячи раз, соревнуясь за меньшее время на каждом уровне, - говорит он. - Она часто интуитивно видит комбинации паттернов, которых я не замечаю. Я должен их выводить. Для меня становится невозможным решить многие головоломки, которые наша шкала категоризирует как трудные или очень трудные, без того, чтобы записывать вероятности карандашом».

Методология Торожкая и Эркси-Раваз была впервые опубликована в журнале Nature Physics, а затем - в журнале Nature Scientific Reports.