Генеральная совокупность и выборочное исследование. Статистическая достоверность

  Генеральная совокупность и выборочное исследование. Статистическая достоверность
Генеральная совокупность и выборочное исследование. Статистическая достоверность

Процедура составления плана выборки включает последовательное решение трех следующих задач:

Определение объекта исследования;

Определение структуры выборки;

Определение объема выборки.

Как правило, объект маркетингового исследования представляет собой совокупность объектов наблюдения, в качестве которых могут выступать потребители, сотрудники компании, посредники и т.д. Если эта совокупность настолько малочисленна, что исследовательская группа располагает необходимыми трудовыми, финансовыми и временными возможностями для установления контакта с каждым из ее элементов, то вполне реально проведение сплошного исследования всей совокупности. В этом случае, определив объект исследования, можно приступать к следующей процедуре (выбору метода сбора данных, орудия исследования и способа связи с аудиторией).

Однако на практике очень часто не представляется возможным или целесообразным проведение сплошного исследования всей совокупности. Для этого могут быть следующие причины:

Невозможность установления контакта с некоторыми элементами совокупности;

Неоправданно большие расходы на проведение сплошного исследования или наличие финансовых ограничений, не позволяющих проведение сплошного исследования;

Сжатые сроки, отведенные для исследования, обусловленные утратой со временем актуальности информации или другими причинами и не позволяющие осуществить сбор, систематизацию и анализ обширных данных для всей совокупности.

Поэтому большие и разбросанные совокупности часто изучаются с помощью выборки, под которой, как известно, понимается часть совокупности, призванная олицетворять совокупность в целом.

Точность, с которой выборка отражает совокупность в целом, зависит от структуры и размера выборки .

Различают два подхода к структуре выборки - вероятностный и детерминированный.

Вероятностный подход к структуре выборки предполагает, что любой элемент совокупности может быть выбран с определенной (не нулевой) вероятностью. Существуют различные виды выборок, основанных на теории вероятностей (типическая, гнездовая и др.). Наиболее простой и распространенной на практике является простая случайная выборка, при которой каждый элемент совокупности имеет равную вероятность выбора для исследования.

Вероятностная выборка более точна, позволяет исследователю оценить степень достоверности собранных им данных, хотя она сложней и дороже, чем детерминированная.

Детерминированный подход к структуре выборки предполагает, что выбор элементов совокупности производится методами, основанными либо на соображениях удобства, либо на решении исследователя, либо на контингентных группах.

на соображениях удобства , состоит в выборе любых элементов совокупности исходя из простоты установления контакта с ними. Несовершенство этого метода обусловлено, возможно, низкой репрезентативностью полученной выборки, т.к. удобные для исследователя элементы совокупности могут быть недостаточно характерными представителями совокупности в силу неслучайного и необоснованного их отбора.

Однако, с другой стороны, простота, экономичность и оперативность исследования, проводимого этим методом, снискали ему довольно широкое распространение на практике и, прежде всего при проведении предварительных исследований, направленных на уточнение основных проблем.

Метод формирования выборки, основанный на решении исследователя , состоит в выборе элементов совокупности, которые, по его мнению, являются ее характерными представителями. Этот метод является более совершенным, чем предыдущий, поскольку в его основе лежит ориентировка на характерных представителей исследуемой совокупности, хотя и подбираемых на основе субъективных представлений исследователей о ней.

Метод формирования выборки, основанный на контингентных нормах , состоит в выборе характерных элементов совокупности в соответствии с полученными ранее характеристиками совокупности в целом. Эти характеристики могут быть получены путем проведения предварительных исследований и в отличие от предыдущего метода не носят субъективного характера. Поэтому данный метод является более совершенным, он позволяет получить выборочные совокупности не менее представительные, чем вероятностные выборки при значительно меньших затратах на проведение обследования.

Выбрав структуру выборки (подход к ее формированию, вид вероятностной или метая формирования детерминированной выборки), исследователю предстоит определить объем, т.е. количество элементов выборочной совокупности.

Объем выборки определяет достоверность информации , полученной в результате ее исследования, а также необходимые для проведения исследования затраты. Объем выборки зависит от уровня однородности или разновидности изучаемых объектов.

Чем больше объем выборки, тем выше ее точность и больше затраты на проведения ее обследования. При вероятностном подходе к структуре выборки ее объем может быть определен с помощью известных статистических формул, на основе заданных требований к ее точности.

На практике используется несколько подходов к определению объема выборки:

1. Произвольный подход основан на применении «правила большого пальца». Например, бездоказательно принимается, что для получения точных результатов выборка должна составлять 5 % от совокупности. Данный подход является простым и легким в исполнении, однако не представляется возможным установить точность полученных результатов. При достаточно большой совокупности он к тому же может быть и весьма дорогим.

Объем выборки может быть установлен исходя из неких заранее оговоренных условий. К примеру, заказчик маркетингового исследования знает, что при изучении общественного мнения выборка обычно составляет 1000-1200 человек, поэтому он рекомендует исследователю придерживаться данной цифры. В случае, если на каком-то рынке проводятся ежегодные исследования, то в каждом году используется выборка одного и того же объема. В отличие от первого подхода здесь при определении объема выборки используется известная логика, которая, однако, является весьма уязвимой.

Например, при проведении определенных исследований может потребоваться точность меньше, чем при изучении общественного мнения, да и объем совокупности может быть во много раз меньше, нежели при изучении общественного мнения. Таким образом, данный подход не принимает в расчет текущие обстоятельства и может быть достаточно дорогим.

В ряде случаев в качестве главного аргумента при определении объема выборки используется стоимость проведения обследования. Так, в бюджете маркетинговых исследований предусматриваются затраты на проведение определенных обследований, которые нельзя превышать. Очевидно, что ценность получаемой информации не принимается в расчет. Однако в ряде случаев и малая выборка может дать достаточно точные результаты.

Представляется разумным учитывать затраты не абсолютным образом, а по отношению к полезности информации, полученной в результате проведенных обследований. Заказчик и исследователь должны рассмотреть различные объемы выборки и методы сбора данных, затраты, учесть другие факторы

2. Объем выборки от уровня доверительного интервала допустимой ошибки, каковая, как уже говорилось, задается целесообразной точностью итоговых обобщений: от повышенной до ориентировочной. Однако здесь имеются в виду так называемые случайные ошибки, связанные с природой любых статистических погрешностей. Именно они и вычисляются как ошибки репрезентативности вероятностных выборок.

В. И. Паниотто приводит следующие расчеты репрезентативной выборки с допущением 5-процентной ошибки (табл. 4.2).

Таблица 4.2

Расчетная таблица выборки

Для совокупности более 100000 выборка составляет 400 единиц. Если же иметь в виду генеральные совокупности численностью от 5 тыс. и больше, то, по расчетам того же автора, можно указать величины фактической ошибки выборки в зависимости от ее объема, что для нас весьма важно, памятуя, что величина допустимой ошибки зависит от цели исследования и необязательно должна приближаться к 5-процентному уровню.

Таблица 4.3

Расчетная таблица

Объем выборки, если генеральная совокупность  5000

Фактическая ошибка при данном объёме выборки, %

Наряду со случайными возможны ошибки систематического характера. Они зависят от организации выборочного обследования. Это разнообразные смещения выборки в сторону одного из полюсов выборочного параметра.

3. Объем выборки на основе статистического анализа . Этот подход основан на определении минимального объема выборки исходя из определенных требований к надежности и достоверности получаемых результатов. Он также используется при анализе полученных результатов для отдельных подгрупп, формируемых в составе выборки по полу, возрасту, уровню образования и т.п. Требования к надежности и точности результатов для отдельных подгрупп диктуют определенные требования к объему выборки в целом.

Наиболее теоретически обоснованный и корректный подход к определению объема выборки основан на расчете достоверных интервалов. Понятие вариации характеризует величину несхожести (схожести) ответов респондентов на определенный вопрос. В более строгом плане вариацией значений какого-либо признака в совокупности называется различие его значений у разных единиц данной совокупности в один и тот же период или момент времени. Результаты ответов на вопросы опроса обычно представляются в форме кривой распределения (рис. 4.1). При высокой схожести ответов говорят о малой вариации (узкая кривая распределения) и при низкой схожести ответов – о высокой вариации (широкая кривая распределения).

В качестве меры вариации обычно принимается среднее квадратическое отклонение, которое характеризует среднее расстояние от средней оценки ответов каждого респондента на определенный вопрос.

Малая вариация

Высокая вариация

Рис. 4.1. Вариация и кривые распределения

Поскольку все маркетинговые решения принимаются в условиях неопределенности, то это обстоятельство целесообразно учесть при определении объема выборки. Так как определение исследуемых величин для совокупности в узком осуществляется на основе выборочной статистики, то следует установить диапазон (доверительный интервал), в который, как ожидается, попадут оценки для совокупности в целом, и ошибку их определения.

Доверительный интервал – это диапазон, крайним точкам которого соответствует определенный процент определенных ответов на какой-то вопрос. Доверительный интервал тесно связан со средним квадратическим отклонением изучаемого признака в генеральной совокупности: чем оно больше, тем шире должен быть доверительный интервал, чтобы включить в свой состав определенный процент ответов.

Доверительный интервал, равный или 95 %, или 99 %, является стандартным при проведении маркетинговых исследований. Ни одна фирма не проводит маркетинговых исследований, формируя несколько выборок. И математическая статистика дает возможность получить некую информацию о выборочном распределении, владея только данными о вариации единственной выборки.

Индикатором степени отличия оценки, истинной для совокупности в целом, от оценки, которая ожидается для типичной выборки, является средняя квадратическая ошибка. Причем, чем больше объем выборки, тем меньше ошибка. Высокое значение вариации обусловливает высокое значение ошибки и наоборот.

Когда на заданный вопрос существует только два варианта ответа, выраженные в процентах (используется процентная мера), объем выборки определяется по следующей формуле:

где n – объем выборки; z – нормированное отклонение, определяемое исходя из выбранного уровня доверительности; p – найденная вариация для выборки; g – (100-р); е – допустимая ошибка.

При определении показателя вариации для определенной совокупности прежде всего целесообразно провести предварительный качественный анализ исследуемой совокупности, в первую очередь установить схожесть единиц совокупности в демографическом, социальном и других отношениях, представляющих интерес для исследователя. Возможно проведение пилотного исследования, использование результатов подобных исследований, проведенных в прошлом. При использовании процентной меры изменчивости принимается в расчет то обстоятельство, что максимальная изменчивость достигается для р = 50 %, что является наихудшим случаем. К тому же этот показатель радикальным образом не влияет на объем выборки. Учитывается также мнение заказчика исследования об объеме выборки.

Возможно определение объема выборки на основе использования средних значений, а не процентных величин.

где s – среднее квадратическое отклонение.

На практике, если выборка формируется заново и схожие опросы не проводились, то s не известно. В этом случае целесообразно задавать погрешность е в долях от среднеквадратического отклонения. Расчетная формула преобразуется и приобретает следующий вид:

где .

Выше шел разговор о совокупностях очень больших размеров. Однако в ряде случаев совокупности не являются большими. Обычно, если выборка составляет менее пяти процентов от совокупности, то совокупность считается большой и расчеты проводятся по вышеприведенным правилам. Если объем выборки превышает 5 % от совокупности, то последняя считается малой и в вышеприведенные формулы вводится поправочный коэффициент.

Объем выборки в данном случае определяется следующим образом:

,

где n - объем выборки для малой совокупности; n 0 – объем выборки, рассчитанный по приведенным выше формулам; N – объем генеральной совокупности.

Очевидно, что использование выборки меньших размеров приведет к экономии времени и средств.

Приведенные формулы расчета объема выборки основаны на предположении, что все правила формирования выборки были соблюдены и единственной ошибкой выборки является ошибка, обусловленная ее объемом. Однако, следует помнить, что объем выборки определяет точность полученных результатов, но не их представительность.

Последняя определяется методом формирования выборки. Все формулы для расчета объема выборки предполагают, что репрезентативность гарантируется использованием корректных вероятностных процедур формирования выборки.

Объем, выборки определяется аналитическими, задачами исследования, а ее репрезентативность - целевой установкой программы. Именно программа задает образ необходимой генеральной совокупности для проведения выборки. Будет ли это все население или особые его структурные образования, все элементы изучаемого объекта или только выделяемые по заданным программой критериям, генеральную совокупность составляют все единицы, определенного в программе объекта.

При детерминированном подхода к структуре выборки в общем случае не представляется возможным расчетным путем точно определить ее объем в соответствии с заданным критерием достоверности полученной информации. В этом случае объем выборки может быть определен эмпирически. Ориентиром здесь может служить опыт проведения маркетинговых исследований за рубежом. Так, при обследовании покупателей высокая точность выборки обеспечивается, даже если ее объем не превышает 1% всей совокупности при проведении опросов покупателей средних и крупных розничных фирм, количество опрашиваемых (объем выборки), как правило, колеблется от 500 до 1000 человек.

Значение процедуры выбора метода сбора первичной информации, и орудия исследования состоит в том, что результаты этого выбора определяют как достоверность и точность подлежащей сбору информации, так и продолжительность, и дороговизну ее сбора.

План:

1. Задачи математической статистики.

2. Виды выборок.

3. Способы отбора.

4. Статистическое распределение выборки.

5. Эмпирическая функция распределения.

6. Полигон и гистограмма.

7. Числовые характеристики вариационного ряда.

8. Статистические оценки параметров распределения.

9. Интервальные оценки параметров распределения.

1. Задачи и методы математической статистики

Математическая статистика - это раздел математики, посвященный методам сбора, анализа и обработки результатов статистических данных наблюдений для научных и практических целей.

Пусть требуется изучить совокупность однородных объектов относительно некоторого качественного или количественного признака, характеризующего эти объекты. Например, если имеется партия деталей, то качественным признаком может служить стандартность детали, а количественным- контролируемый размер детали.

Иногда проводят сплошное исследование, т.е. обследуют каждый объект относительно нужного признака. На практике сплошное обследование применяется редко. Например, если совокупность содержит очень большое число объектов, то провести сплошное обследование физически невозможно. Если обследование объекта связано с его уничтожением или требует больших материальных затрат, то проводить сплошное обследование не имеет смысла. В таких случаях случайно отбирают из всей совокупности ограниченное число объектов (выборочную совокупность) и подвергают их изучению.

Основная задача математической статистики заключается в исследовании всей совокупности по выборочным данным в зависимости от поставленной цели, т.е. изучение вероятностных свойств совокупности: закона распределения, числовых характеристик и т.д. для принятия управленческих решений в условиях неопределенности.

2. Виды выборок

Генеральная совокупность – это совокупность объектов, из которой производится выборка.

Выборочная совокупность (выборка) – это совокупность случайно отобранных объектов.

Объем совокупности – это число объектов этой совокупности. Объем генеральной совокупности обозначается N , выборочной – n .

Пример:

Если из 1000 деталей отобрано для обследования 100 деталей, то объем генеральной совокупности N = 1000, а объем выборки n = 100.

Присоставлении выборки можно поступить двумя способами: после того, как объект отобран и над ним произведено наблюдение, он может быть возвращен либо не возвращен в генеральную совокупность. Т.о. выборки делятся на повторные и бесповторные.

Повторной называют выборку , при которой отобранный объект (перед отбором следующего) возвращается в генеральную совокупность.

Бесповторной называют выборку , при которой отобранный объект в генеральную совокупность не возвращается.

На практике обычно пользуются бесповторным случайным отбором.

Для того, чтобы по данным выборки можно было достаточно уверенно судить об интересующем признаке генеральной совокупности, необходимо, чтобы объекты выборки правильно его представляли. Выборка должна правильно представлять пропорции генеральной совокупности. Выборка должна быть репрезентативной (представительной).

В силу закона больших чисел можно утверждать, что выборка будет репрезентативной, если ее осуществлять случайно.

Если объем генеральной совокупности достаточно велик, а выборка составляет лишь незначительную часть этой совокупности, то различие между повторной и бесповторной выборками стирается; в предельном случае, когда рассматривается бесконечная генеральная совокупность, а выборка имеет конечный объем, это различие исчезает.

Пример:

В американском журнале «Литературное обозрение» с помощью статистическихметодов было проведено исследование прогнозов относительно исхода предстоящих выборов президента США в 1936 году. Претендентами на этот пост были Ф.Д. Рузвельт и А. М. Ландон. В качестве источника для генеральной совокупности исследуемых американцев были взяты справочники телефонных абонентов. Из них случайным образом были выбраны 4 миллиона адресов., по которым редакция журнала разослала открытки с просьбой высказать свое отношение к кандидатам на пост президента. Обработав результаты опроса, журнал опубликовал социологический прогноз о том, что на предстоящих выборах с большим перевесом победит Ландон. И … ошибся: победу одержал Рузвельт.
Этот пример можно рассматривать, как пример нерепрезентативной выборки. Дело в том, что в США в первой половине двадцатого века телефоны имела лишь зажиточная часть населения, которые поддерживали взгляды Ландона.

3. Способы отбора

На практике применяются различные способы отбора, которые можно разделить на 2 вида:

1. Отбор не требует расчленения генеральной совокупности на части (а) простой случайный бесповторный ; б) простой случайный повторный ).

2. Отбор, при котором генеральная совокупность разбивается на части. (а) типичный отбор ; б) механический отбор ; в) серийный отбор ).

Простым случайным называют такой отбор , при котором объекты извлекаются по одному из всей генеральной совокупности (случайно).

Типичным называют отбор , при котором объекты отбираются не из всей генеральной совокупности, а из каждой ее «типичной» части. Например, если деталь изготавливают на нескольких станках, то отбор производят не из всей совокупности деталей, произведенных всеми станками, а из продукции каждого станка в отдельности. Таким отбором пользуются тогда, когда обследуемый признак заметно колеблется в различных «типичных» частях генеральной совокупности.

Механическим называют отбор , при котором генеральную совокупность «механически» делят на столько групп, сколько объектов должно войти в выборку, а из каждой группы отбирают один объект. Например, если нужно отобрать 20 % изготовленных станком деталей, то отбирают каждую 5-ую деталь; если требуется отобрать 5 % деталей- каждую 20-ую и т.д. Иногда такой отбор может не обеспечивать репрезентативность выборки (если отбирают каждый 20-ый обтачиваемый валик, причем сразу же после отбора производится замена резца, то отобранными окажутся все валики, обточенные затупленными резцами).

Серийным называют отбор , при котором объекты отбирают из генеральной совокупности не по одному, а «сериями», которые подвергают сплошному обследованию. Например, если изделия изготавливаются большой группой станков-автоматов, то подвергают сплошному обследованию продукцию только нескольких станков.

На практике часто применяют комбинированный отбор, при котором сочетаются указанные выше способы.

4. Статистическое распределение выборки

Пусть из генеральной совокупности извлечена выборка, причем значение x 1 –наблюдалось раз, x 2 -n 2 раз,… x k - n k раз. n = n 1 +n 2 +...+n k – объем выборки. Наблюдаемые значения называются вариантами , а последовательность вариант, записанных в возрастающем порядке- вариационным рядом . Числа наблюдений называются частотами (абсолютными частотами) , а их отношения к объему выборки - относительными частотами или статистическими вероятностями.

Если количество вариант велико или выборка производится из непрерывной генеральной совокупности, то вариационный ряд составляется не по отдельным точечным значениям, а по интервалам значений генеральной совокупности. Такой вариационный ряд называется интервальным. Длины интервалов при этом должны быть равны.

Статистическим распределением выборки называется перечень вариант и соответствующих им частот или относительных частот.

Статистическое распределение можно задать также в виде последовательности интервалов и соответствующих им частот (суммы частот, попавших в этот интервал значений)

Точечный вариационный ряд частот может быть представлен таблицей:

x i
x 1
x 2

x k
n i
n 1
n 2

n k

Аналогично можно представить точечный вариационный ряд относительных частот.

Причем:

Пример:

Число букв в некотором тексте Х оказалось равным 1000. Первой встретиласьбуква «я», второй- буква «и», третьей- буква «а», четвертой- «ю». Затем шли буквы«о», «е», «у», «э», «ы».

Выпишем места, которые они занимают в алфавите, соответственно имеем: 33, 10, 1, 32, 16, 6, 21, 31, 29.

После упорядочения этих чисел по возрастанию получаем вариационный ряд: 1, 6, 10, 16, 21, 29, 31, 32, 33.

Частоты появления букв в тексте: «а» - 75, «е» -87, «и»- 75, «о»- 110, «у»- 25, «ы»- 8, «э»- 3, «ю»- 7, «я»- 22.

Составим точечный вариационный ряд частот:

Пример:

Задано распределение частот выборки объема n = 20.

Составьте точечный вариационный ряд относительных частот.

x i

2

6

12

n i

3

10

7

Решение:

Найдем относительные частоты:


x i

2

6

12

w i

0,15

0,5

0,35

При построении интервального распределения существуют правилавыбора числа интервалов или величины каждого интервала. Критерием здесь служит оптимальное соотношение: при увеличении числа интервалов улучшается репрезентативность, но увеличивается объем данных и время на их обработку. Разность x max - x min между наибольшим и наименьшим значениями вариант называют размахом выборки.

Для подсчета числа интервалов k обычно применяют эмпирическую формулу Стреджесса (подразумевая округление до ближайшего удобного целого): k = 1 + 3.322 lg n .

Соответственно, величину каждого интервала h можно вычислить по формуле :

5. Эмпирическая функция распределения

Рассмотрим некоторую выборку из генеральной совокупности. Пусть известно статистическое распределение частот количественного признака Х. Введем обозначения: n x – число наблюдений, при которых наблюдалось значение признака, меньшее х; n общее число наблюдений (объем выборки). Относительная частота события Х<х равна n x /n . Если х изменяется, то изменяется и относительная частота, т.е. относительная частота n x /n - есть функция от х. Т.к. она находится эмпирическим путем, то она называется эмпирической.

Эмпирической функцией распределения (функцией распределения выборки) называют функцию , определяющую для каждого х относительную частоту события Х<х.


где число вариант, меньших х,

n - объем выборки.

В отличие от эмпирической функции распределения выборки, функцию распределения F (x ) генеральной совокупности называют теоретической функцией распределения .

Различие между эмпирической и теоретической функциями распределения состоит в том, что теоретическая функция F (x ) определяет вероятность события ХF*(x) стремится по вероятности к вероятности F (x ) этого события. Т.е.при большом n F*(x) и F (x ) мало отличаются друг от друга.

Т.о. целесообразно использовать эмпирическую функцию распределения выборки для приближенного представления теоретической (интегральной) функции распределения генеральной совокупности.

F*(x) обладает всеми свойствами F (x ).

1. ЗначенияF*(x) принадлежат интервалу .

2. F*(x) - неубывающая функция.

3. Если – наименьшая варианта, тоF*(x) = 0, при х< x 1 ; если x k – наибольшая варианта, то F*(x) = 1, при х > x k .

Т.е. F*(x) служит для оценки F (x ).

Если выборка задана вариационным рядом, то эмпирическая функция имеет вид:

График эмпирической функции называется кумулятой.

Пример:

Постройте эмпирическую функцию по данному распределению выборки.


Решение:

Объем выборки n = 12 + 18 +30 = 60. Наименьшая варианта 2, т.е. при х < 2. Событие X <6, (x 1 = 2) наблюдалось 12 раз, т.е. F*(x)=12/60=0,2 при 2 < x < 6. Событие Х<10, (x 1 =2, x 2 = 6) наблюдалось 12 + 18 = 30 раз, т.е.F*(x)=30/60=0,5 при 6 < x < 10. Т.к. х=10 наибольшая варианта, тоF*(x) = 1 при х>10. Искомая эмпирическая функция имеет вид:

Кумулята:


Кумулята дает возможность понимать графически представленную информацию, например, ответить на вопросы: «Определите число наблюдений, при которых значение признака было меньше 6 или не меньше 6. F*(6) =0,2 » Тогда число наблюдений, при которых значение наблюдаемого признака было меньше 6 равно 0,2* n = 0,2*60 = 12. Число наблюдений, при которых значение наблюдаемого признака было не меньше 6 равно (1-0,2)* n = 0,8*60 = 48.

Если задан интервальный вариационный ряд, то для составления эмпирической функции распределения находят середины интервалов и по ним получают эмпирическую функцию распределения аналогично точечному вариационному ряду.

6. Полигон и гистограмма

Для наглядности строят различные графики статистического распределения: полином и гистограммы

Полигон частот- это ломаная, отрезки которой соединяют точки ( x 1 ;n 1 ), ( x 2 ;n 2 ),…, ( x k ; n k ), где – варианты, – соответствующие им частоты.

Полигон относительных частот- это ломаная, отрезки которой соединяют точки ( x 1 ;w 1 ), (x 2 ;w 2 ),…, ( x k ;w k ), гдеx i –варианты, w i – соответствующие им относительные частоты.

Пример:

Постройте полином относительных частот по данному распределению выборки:

Решение:

В случае непрерывного признака целесообразно строить гистограмму, для чего интервал, в котором заключены все наблюдаемые значения признака, разбивают на несколько частичных интервалов длиной h и находят для кажд ого частичного интервала n i – сумму частот вариант, попавших в i -ый интервал. (Например, при измерении роста человека или веса, мы имеем дело с непрерывным признаком).

Гистограмма частот- это ступенчатая фигура, состоящая из прямоугольников, основаниями которых служат частичные интервалы длиною h , а высоты равны отношению (плотность частот).

Площадь i -го частичного прямоугольника равна- сумме частот вариант i - го интервала, т.е. площадь гистограммы частот равна сумме всех частот, т.е. объему выборки.

Пример:

Даны результаты изменения напряжения (в вольтах) в электросети. Составьте вариационный ряд, постройте полигон и гистограмму частот, если значения напряжения следующие: 227, 215, 230, 232, 223, 220, 228, 222, 221, 226, 226, 215, 218, 220, 216, 220, 225, 212, 217, 220.

Решение:

Составим вариационный ряд. Имеем n = 20, x min =212, x max =232 .

Применим формулу Стреджесса для подсчета числа интервалов.

Интервальный вариационный ряд частот имеет вид:


Плотность частот

212-21 6

0,75

21 6-22 0

0,75

220-224

1,75

224-228

228-232

0,75

Построим гистограмму частот:

Построим полигон частот, найдя предварительно середины интервалов:


Гистограммой относительных частот называют ступенчатую фигуру, состоящую из прямоугольников, основаниями которыхслужат частичные интервалы длиною h , а высоты равны отношению w i /h (плотность относительной частоты).

Площадь i -го частичного прямоугольника равна- относительной частоте вариант, попавших в i - ый интервал. Т.е. площадь гистограммы относительных частот равна сумме всех относительных частот, т.е. единице.

7. Числовые характеристики вариационного ряда

Рассмотрим основные характеристики генеральной и выборочной совокупностей.

Генеральным средним называется среднее арифметическое значений признака генеральной совокупности.

Для различных значений x 1 , x 2 , x 3 , …, x n . признака генеральной совокупности объема N имеем:

Если значения признака имеют соответствующие частоты N 1 +N 2 +…+N k =N , то


Выборочным средним называется среднее арифметическое значений признака выборочной совокупности.

Если значения признака имеют соответствующие частоты n 1 +n 2 +…+n k = n , то


Пример:

Вычислите выборочное среднее для выборки: x 1 = 51,12; x 2 = 51,07;x 3 = 52,95; x 4 =52,93;x 5 = 51,1;x 6 = 52,98; x 7 = 52,29; x 8 = 51,23; x 9 = 51,07; x 10 = 51,04.

Решение:

Генеральной дисперсией называется среднее арифметическое квадратов отклонений значений признака Х генеральной совокупности от генерального среднего.

Для различных значений x 1 , x 2 , x 3 , …, x N признака генеральной совокупности объема N имеем:

Если значения признака имеют соответствующие частоты N 1 +N 2 +…+N k =N , то

Генеральным среднеквадратическим отклонением (стандартом) называют квадратный корень из генеральной дисперсии

Выборочной дисперсией называется среднее арифметическое квадратов отклонений наблюдаемых значений признака от среднего значения.

Для различных значений x 1 , x 2 , x 3 , …, x n признака выборочной совокупности объема n имеем:


Если значения признака имеют соответствующие частоты n 1 +n 2 +…+n k = n , то


Выборочным среднеквадратическим отклонением (стандартом) называется квадратный корень из выборочной дисперсии.


Пример:

Выборочная совокупность задана таблицей распределения. Найдите выборочную дисперсию.


Решение:

Теорема: Дисперсия равна разности среднего квадратов значений признака и квадрата общего среднего.

Пример:

Найдите дисперсию по данному распределению.



Решение:

8. Статистические оценки параметров распределения

Пусть генеральная совокупность исследуется по некоторой выборке. При этом можно получить лишь приближенное значение неизвестного параметра Q , который служит его оценкой. Очевидно, что оценки могут изменяться от одной выборки к другой.

Статистической оценкой Q * неизвестного параметра теоретического распределения называется функция f , зависящая от наблюдаемых значений выборки. Задачей статистического оценивания неизвестных параметров по выборке заключается в построении такой функции от имеющихся данных статистических наблюдений, которая давала бы наиболее точные приближенные значения реальных, не известных исследователю, значений этих параметров.

Статистические оценки делятся на точечные и интервальные, в зависимости от способа их предоставления (числом или интервалом).

Точечной называют статистическую оценку параметра Q теоретического распределения определяемую одним значением параметра Q *=f (x 1 , x 2 , ..., x n), где x 1 , x 2 , ..., x n - результаты эмпирических наблюдений над количественным признаком Х некоторой выборки.

Такие оценки параметров, полученные по разным выборкам, чаще всего отличаются друг от друга. Абсолютная разность /Q *-Q / называют ошибкой выборки (оценивания).

Для того, чтобы статистические оценки давали достоверные результаты об оцениваемых параметрах, необходимо, чтобы они были несмещенными, эффективными и состоятельными.

Точечная оценка , математическое ожидание которой равно (не равно) оцениваемому параметру, называется несмещенной (смещенной) . М(Q *)=Q .

Разность М(Q *)-Q называют смещением или систематической ошибкой . Для несмещенных оценок систематическая ошибка равна 0.

Эффективной оценку Q *, которая при заданном объеме выборки n имеет наименьшую возможную дисперсию: D min (n = const ). Эффективная оценка имеет наименьший разброс по сравнению с другими несмещенными и состоятельными оценками.

Состоятельной называют такую статистическую оценку Q *, которая при n стремится по вероятности к оцениваемому параметру Q , т.е. при увеличении объема выборки n оценка стремится по вероятности к истинному значению параметра Q .

Требование состоятельности согласуется с законом больших числе: чем больше исходной информации об исследуемом объекте, тем точнее результат. Если объем выборки мал, то точечная оценка параметра может привести к серьезным ошибкам.

Любую выборку (объема n ) можно рассматривать как упорядоченный набор x 1 , x 2 , ..., x n независимых одинаково распределенных случайных величин.

Выборочные средние для различных выборок объема n из одной и той же генеральной совокупности будут различны. Т. е. выборочное среднее можно рассматривать как случайную величину, а значит, можно говорить о распределении выборочного среднего и его числовых характеристиках.

Выборочное среднее удовлетворяет всем накладываемым к статистическим оценкам требованиям, т.е. дает несмещенную, эффективную и состоятельную оценку генерального среднего.

Можно доказать, что . Таким образом, выборочная дисперсия является смещенной оценкой генеральной дисперсии, давая ее заниженное значение. Т. е. при небольшом объеме выборки она будет давать систематическую ошибку. Для несмещенной, состоятельной оценки достаточно взять величину , которую называют исправленной дисперсией. Т. е.

На практике для оценки генеральной дисперсии применяют исправленную дисперсию при n < 30. В остальных случаях (n >30) отклонение от малозаметно. Поэтому при больших значениях n ошибкой смещения можно пренебречь.

Можно так же доказать,что относительная частота n i / n является несмещенной и состоятельной оценкой вероятности P (X =x i ). Эмпирическая функция распределения F *(x ) является несмещенной и состоятельной оценкой теоретической функции распределения F (x )= P (X < x ).

Пример:

Найдите несмещенные оценки математического ожиданияи дисперсии по таблице выборки.

x i
n i

Решение:

Объем выборки n =20.

Несмещенной оценкой математического ожидания является выборочное среднее.


Для вычисления несмещенной оценки дисперсии сначала найдем выборочную дисперсию:

Теперь найдем несмещенную оценку:

9. Интервальные оценки параметров распределения

Интервальной называется статистическая оценка, определяемая двумя числовыми значениями- концами исследуемого интервала.

Число > 0, при котором | Q - Q *|< , характеризует точность интервальной оценки.

Доверительным называется интервал , который с заданной вероятностью покрывает неизвестное значение параметра Q . Дополнение доверительного интервала до множества всех возможных значений параметра Q называется критической областью . Если критическая область расположена только с одной стороны от доверительного интервала, то доверительный интервал называется односторонним: левосторонним , если критическая область существует только слева, и правосторонним- если только справа. В противном случае, доверительный интервал называется двусторонним .

Надежностью, или доверительной вероятностью, оценки Q (с помощью Q *) называют вероятность, с которой выполняется следующее неравенство: | Q - Q *|< .

Чаще всего доверительную вероятность задают заранее (0,95; 0,99; 0,999) и на нее накладывают требование быть близкой к единице.

Вероятность называют вероятностью ошибки, или уровнем значимости.

Пусть | Q - Q *|< , тогда . Это означает, что с вероятностью можно утверждать, что истинное значение параметра Q принадлежит интервалу . Чем меньше величина отклонения , тем точнее оценка.

Границы (концы) доверительного интервала называют доверительными границами, или критическими границами.

Значения границ доверительного интервала зависят от закона распределения параметра Q *.

Величину отклонения равную половине ширины доверительного интервала, называют точностью оценки.

Методы построения доверительных интервалов впервые были разработаны американским статистом Ю. Нейманом. Точность оценки , доверительная вероятность и объем выборки n связаны между собой. Поэтому, зная конкретные значения двух величин, всегда можно вычислить третью.

Нахождение доверительного интервала для оценки математического ожидания нормального распределения, если известно среднеквадратическое отклонение.

Пусть произведена выборка из генеральной совокупности, подчиненной закону нормального распределения. Пусть известно генеральное среднеквадратическое отклонение , но неизвестно математическое ожидание теоретического распределения a ( ).

Справедлива следующая формула:

Т.е. по заданному значению отклонения можно найти, с какой вероятностью неизвестное генеральное среднее принадлежит интервалу . И наоборот. Из формулы видно, что при возрастании объема выборки и фиксированной величине доверительной вероятности величина - уменьшается, т.е. точность оценки увеличивается. С увеличением надежности (доверительной вероятности), величина -увеличивается, т.е. точность оценки уменьшается.

Пример:

В результате испытаний были получены следующие значения -25, 34, -20, 10, 21. Известно, что они подчиняются закону нормального распределения с среднеквадратическим отклонением 2. Найдите оценку а* для математического ожидания а. Постройте для него 90%-ый доверительный интервал.

Решение:

Найдем несмещенную оценку

Тогда


Доверительный интервал для а имеет вид: 4 – 1,47< a < 4+ 1,47 или 2,53 < a < 5, 47

Нахождение доверительного интервала для оценки математического ожидания нормального распределения, если неизвестно среднеквадратическое отклонение.

Пусть известно, что генеральная совокупность подчинена закону нормального распределения, где неизвестны а и . Точность доверительного интервала, покрывающего с надежностью истинное значение параметра а, в данном случае вычисляется по формуле:

, где n - объем выборки, , - коэффициент Стьюдента (его следует находить по заданным значениям n и из таблицы «Критические точки распределения Стьюдента»).

Пример:

В результате испытаний были получены следующие значения -35, -32, -26, -35, -30, -17. Известно, что они подчиняются закону нормального распределения. Найдите доверительный интервал для математического ожидания а генеральной совокупности с доверительной вероятностью 0,9.

Решение:

Найдем несмещенную оценку .

Найдем .

Тогда

Доверительный интервал примет вида (-29,2 - 5,62; -29,2 + 5,62) или (-34,82; -23,58).

Нахождение доверительного интерла для дисперсии и среднеквадратического отклонения нормального распределения

Пусть из некоторой генеральной совокупности значений, распределенной по нормальному закону, взята случайная выборка объема n < 30, для которой вычислены выборочные дисперсии: смещенная и исправленная s 2 . Тогда для нахождения интервальных оценок с заданной надежностью для генеральной дисперсии D генерального среднеквадратического отклонения используются следующие формулы.


или ,

Значения - находят с помощью таблицы значений критических точек распределения Пирсона.

Доверительный интервал для дисперсии находится из этих неравенств путем возведения всех частей неравенства в квадрат.

Пример:

Было проверено качество 15 болтов. Предполагая, что ошибка при их изготовлении подчинена нормальному закону распределения, причем выборочное среднеквадратическое отклонение равно 5 мм, определить с надежностью доверительный интервал для неизвестного параметра

Границы интервала представим в виде двойного неравенства:

Концы двустороннего доверительного интервала для дисперсии можно определить и без выполнения арифметических действий по заданному уровню доверия и объему выборки с помощью соответствующей таблицы (Границы доверительных интервалов для дисперсии в зависимости от числа степеней свободы и надежности). Для этого полученные из таблицы концы интервала умножают на исправленную дисперсию s 2 .

Пример:

Решим предыдущую задачу другим способом.

Решение:

Найдем исправленную дисперсию:

По таблице «Границы доверительных интервалов для дисперсии в зависимости от числа степеней свободы и надежности» найдем границы доверительного интервала для дисперсии при k =14 и : нижняя граница 0,513 и верхняя 2,354.

Умножим полученные границы на s 2 и извлечем корень (т.к. нам нужен доверительный интервал не для дисперсии, а для среднеквадратического отклонения).

Как видно из примеров, величина доверительного интервала зависит от способа его построения и дает близкие между собой, но неодинаковые результаты.

При выборках достаточно большого объема (n >30) границы доверительного интервала для генерального среднеквадратического отклонения можно определить по формуле: - некоторое число, которое табулировано и приводится в соответствующей справочной таблице.

Если 1- q <1, то формула имеет вид:

Пример:

Решим предыдущую задачу третьим способом.

Решение:

Ранее было найдено s = 5,17. q (0,95; 15) = 0,46 – находим по таблице.

Тогда:

Интервальное оценивание вероятности события. Формулы расчета численности выборки при собственно-случайном способе отбора.

Для определения вероятностей интересующих нас событий мы применяем выборочный метод : проводим n независимых экспериментов, в каждом из которых может произойти (или не произойти) событие А (вероятность р появления события А в каждом эксперименте постоянна). Тогда относительная частота p* появлений событий А в серии из n испытаний принимается в качестве точечной оценки для вероятности p появления события А в отдельном испытании. При этом величину p* называют выборочной долей появлений события А , а р - генеральной долей .

В силу следствия из центральной предельной теоремы (теорема Муавра-Лапласа) относительную частоту события при большом объеме выборки можно считать нормально распределенной с параметрами M(p*)=p и

Поэтому при n>30 доверительный интервал для генеральной доли можно построить, используя формулы:


где u кр находится по таблицам функции Лапласа с учетом заданной доверительной вероятности γ: 2Ф(u кр)=γ.

При малом объеме выборки n≤30 предельная ошибка ε определяется по таблице распределения Стьюдента :
где t кр =t(k; α) и число степеней свободы k=n-1 вероятность α=1-γ (двустороння область).

Формулы справедливы, если отбор проводился случайным повторным образом (генеральная совокупность бесконечна), в противном случае необходимо сделать поправку на бесповторность отбора (таблица).

Средняя ошибка выборки для генеральной доли

Генеральная совокупность Бесконечная Конечная объема N
Тип отбора Повторный Бесповторный
Средняя ошибка выборки

Формулы расчета численности выборки при собственно-случайном способе отбора

Способ отбора Формулы определения численности выборки
для средней для доли
Повторный
Бесповторный
Доля единиц w = . Точность ε = . Вероятность γ =

Задачи о генеральной доле

На вопрос «Накрывает ли доверительный интервал заданное значение p 0 ?» - можно ответить, проверив статистическую гипотезу H 0:p=p 0 . При этом предполагается, что опыты проводятся по схеме испытаний Бернулли (независимы, вероятность p появления события А постоянна). По выборке объема n определяют относительную частоту p * появления события A: где m - количество появлений события А в серии из n испытаний. Для проверки гипотезы H 0 используется статистика, имеющая при достаточно большом объеме выборки стандартное нормальное распределение (табл. 1).
Таблица 1 - Гипотезы о генеральной доле

Гипотеза

H 0:p=p 0 H 0:p 1 =p 2
Предположения Схема испытаний Бернулли Схема испытаний Бернулли
Оценки по выборке
Статистика K
Распределение статистики K Стандартное нормальное N(0,1)

Пример №1 . С помощью случайного повторного отбора руководство фирмы провело выборочный опрос 900 своих служащих. Среди опрошенных оказалось 270 женщин. Постройте доверительный интервал , с вероятностью 0.95 накрывающий истинную долю женщин во всем коллективе фирмы.
Решение. По условию выборочная доля женщин составляет (относительная частота женщин среди всех опрошенных). Так как отбор является повторным, и объем выборки велик (n=900) предельная ошибка выборки определяется по формуле

Значение u кр находим по таблице функции Лапласа из соотношения 2Ф(u кр)=γ, т.е. Функция Лапласа (приложение 1) принимает значение 0.475 при u кр =1.96. Следовательно, предельная ошибка и искомый доверительный интервал
(p – ε, p + ε) = (0.3 – 0.18; 0.3 + 0.18) = (0.12; 0.48)
Итак, с вероятностью 0.95 можно гарантировать, что доля женщин во всем коллективе фирмы находится в интервале от 0.12 до 0.48.

Пример №2 . Владелец автостоянки считает день «удачным», если автостоянка заполнена более, чем на 80 %. В течение года было проведено 40 проверок автостоянки, из которых 24 оказались «удачными». С вероятностью 0.98 найдите доверительный интервал для оценки истинной доли «удачных» дней в течение года.
Решение . Выборочная доля «удачных» дней составляет
По таблице функции Лапласа найдем значение u кр при заданной
доверительной вероятности
Ф(2.23) = 0.49, u кр = 2.33.
Считая отбор бесповторным (т.е. две проверки в один день не проводилось), найдем предельную ошибку:
где n=40 , N = 365 (дней). Отсюда
и доверительный интервал для генеральной доли: (p – ε, p + ε) = (0.6 – 0.17; 0.6 + 0.17) = (0.43; 0.77)
С вероятностью 0.98 можно ожидать, что доля «удачных» дней в течение года находится в интервале от 0.43 до 0.77.

Пример №3 . Проверив 2500 изделий в партии, обнаружили, что 400 изделий высшего сорта, а n–m – нет. Сколько надо проверить изделий, чтобы с уверенностью 95% определить долю высшего сорта с точностью до 0.01 ?
Решение ищем по формуле определения численности выборки для повторного отбора.

Ф(t) = γ/2 = 0.95/2 = 0.475 и этому значению по таблице Лапласа соответствует t=1.96
Выборочная доля w = 0.16; ошибка выборки ε = 0.01

Пример №4 . Партия изделий принимается, если вероятность того, что изделие окажется соответствующим стандарту, составляет не менее 0.97. Среди случайно отобранных 200 изделий проверяемой партии оказалось 193 соответствующих стандарту. Можно ли на уровне значимости α=0,02 принять партию?
Решение . Сформулируем основную и альтернативную гипотезы.
H 0:p=p 0 =0,97 - неизвестная генеральная доля p равна заданному значению p 0 =0,97. Применительно к условию - вероятность того, что деталь из проверяемой партии окажется соответствующей стандарту, равна 0.97; т.е. партию изделий можно принять.
H 1:p<0,97 - вероятность того, что деталь из проверяемой партии окажется соответствующей стандарту, меньше 0.97; т.е. партию изделий нельзя принять. При такой альтернативной гипотезе критическая область будет левосторонней.
Наблюдаемое значение статистики K (таблица) вычислим при заданных значениях p 0 =0,97, n=200, m=193


Критическое значение находим по таблице функции Лапласа из равенства


По условию α=0,02 отсюда Ф(Ккр)=0,48 и Ккр=2,05. Критическая область левосторонняя, т.е. является интервалом (-∞;-K kp)= (-∞;-2,05). Наблюдаемое значение К набл =-0,415 не принадлежит критической области, следовательно, на данном уровне значимости нет оснований отклонять основную гипотезу. Партию изделий принять можно.

Пример №5 . Два завода изготавливают однотипные детали. Для оценки их качества сделаны выборки из продукции этих заводов и получены следующие результаты. Среди 200 отобранных изделий первого завода оказалось 20 бракованных, среди 300 изделий второго завода - 15 бракованных.
На уровне значимости 0.025 выяснить, имеется ли существенное различие в качестве изготавливаемых этими заводами деталей.

По условию α=0,025 отсюда Ф(Ккр)=0,4875 и Ккр=2,24. При двусторонней альтернативе область допустимых значений имеет вид (-2,24;2,24). Наблюдаемое значение K набл =2,15 попадает в этот интервал, т.е. на данном уровне значимости нет оснований отвергать основную гипотезу. Заводы изготавливают изделия одинакового качества.

Часто бывает так, что необходимо проанализировать какое-либо конкретное социальное явление и получить информацию о нем. Такие задания часто возникают в статистике и при статистических исследованиях. Проверить полностью определенное социальное явление чаще всего бывает невозможным. Например, как узнать мнение населения или всех жителей определенного города по какому-либо вопросу? Спрашивать абсолютно всех – дело практически невозможное и очень трудоемкое. В таких случаях нам и необходима выборка. Это именно то понятие, на котором основаны практически все исследования и анализы.

Что такое выборка

При анализе конкретного социального явления необходимо получить информацию о нем. Если взять любое исследование, то можно заметить, что исследованию и анализу подлежит не каждая единица совокупности объекта исследования. Во внимание берется только определенная часть всей этой совокупности. Вот этот процесс и является выборкой: когда исследуются только определенные единицы из множества.

Конечно же, многое зависит от вида выборки. Но есть и основные правила. Главное из них гласит, что отбор из совокупности должен быть абсолютно случайным. Единицы совокупности, которые будут использованы, не должны быть выбраны из-за какого-либо критерия. Грубо говоря, если необходимо набрать совокупность из населения определенного города и отобрать только мужчин, то в исследовании будет ошибка, потому что отбор был проведен не случайно, а отобран по гендерному признаку. Практически все методы выборки основаны на этом правиле.

Правила выборки

Для того чтобы отобранная совокупность отражала основные качества всего явления, она должна быть построена по конкретным законам, где основное внимание необходимо уделять следующим категориям:

  • выборка (выборочная совокупность);
  • генеральная совокупность;
  • репрезентативность;
  • ошибка репрезентативности;
  • единица совокупности;
  • способы построения выборки.

Особенности выборочного наблюдения и составления выборки заключаются в следующем:

  1. Все полученные результаты основаны на математических законах и правилах, то есть при правильном проведении исследования и при правильных расчетах результаты не будут искажены по субъективному признаку
  2. Дает возможность значительно быстрее и с меньшими затратами времени и ресурсов получить результат, изучая не весь массив событий, а только их часть.
  3. Может быть применено для изучения различных объектов: от конкретных вопросов, например, возраст, пол интересующей нас группы, к изучению общественного мнения или уровня материального обеспечения населения.

Выборочное наблюдение

Выборочное - это такое статистическое наблюдение, при котором исследованию подвергается не вся совокупность изучаемого, а лишь некоторая, отобранная определенным образом ее часть, а полученные результаты изучения этой части распространяются на всю совокупность. Эта часть называется выборочной совокупностью. Это единственный способ изучения большого массива объекта исследования.

Но выборочное наблюдение может использоваться только в тех случаях, когда необходимо исследовать лишь малую группу единиц. Например, при исследовании соотношения мужчин к женщинам в мире, будет использоваться выборочное наблюдение. По понятным причинам – взять во внимание каждого жителя нашей планеты невозможно.

А вот при таком же исследовании, но не всех жителей земли, а определенного 2 «А» класса в конкретной школе, определенного города, определенной страны, может обойтись без выборочного наблюдения. Ведь проанализировать весь массив объекта исследования – вполне возможно. Необходимо посчитать мальчиков и девочек этого класса - вот и будет соотношение.


Выборочная и генеральная совокупность

На самом деле все не так сложно, как звучит. В любом объекте изучения есть две системы: генеральная и выборочная совокупность. Что же это такое? Все единицы относятся к генеральной. А к выборочной – те единицы общей совокупности, которые были взяты для выборки. Если все правильно сделано, то отобранная часть будет составлять уменьшенный макет всей (генеральной) совокупности.

Если говорить о генеральной совокупности, то можно выделить всего две ее разновидности: определенная и неопределенная генеральная совокупность. Зависит от того, известно ли общее количество единиц данной системы или нет. Если это определенная генеральная совокупность, то выборку будет делать легче из-за того, что известно, какой процент от общего количества единиц будет составлять выборка.

Этот момент очень необходим в исследованиях. Например, если необходимо исследовать процент недоброкачественной продукции кондитерских изделий на конкретном заводе. Допустим, что генеральная совокупность уже определена. Точно известно, что в год это предприятие производит 1000 кондитерских изделий. Если сделать выборку 100 случайных кондитерских изделий из этой тысячи и отправить их на экспертизу, то погрешность будет минимальной. Грубо говоря, исследованию подлежало 10 % всей продукции, и по результатам можем, приняв во внимание ошибку репрезентативности, говорить о недоброкачественности всей продукции.

А если провести выборку 100 кондитерских изделий из неопределенной генеральной совокупности, где их на самом деле было, допустим, 1 млн единиц, то результат выборки и самого исследования будет критически неправдоподобным и неточным. Чувствуете разницу? Поэтому определенность генеральной совокупности в большинстве случаев крайне важна и очень сильно влияет на результат исследования.


Репрезентативность совокупности

Итак, теперь один из самых главных вопросов - какой должна быть выборка? Это самый главный момент исследования. На этом этапе необходимо рассчитать выборку и отобрать единицы из общего числа в нее. Совокупность была отобрана правильно, если определенные особенности и характеристики генеральной совокупности остается и в выборочной. Это называется репрезентативностью.

Иными словами, если после отбора часть сохраняет те же самые тенденции и особенности что и все количество исследуемого, то такая совокупность называется репрезентативной. Но не каждая определенная выборка может быть отобрана из репрезентативной совокупности. Бывают и такие объекты исследования, выборка которых просто не может быть репрезентативной. Отсюда и возникает понятие ошибки репрезентативности. Но об этом поговорим подробнее чуть больше.

Как сделать выборку

Итак, чтобы репрезентативность была максимальной, выделяют три основные правила выборки:

  1. Самым уникальным показателем числа выборки считается 20 %. Статистическая выборка в 20 % будет практически всегда давать результат максимально приближенный к действительности. В то же самое время нет необходимости переносить в собранную большую часть генеральной совокупности. 20 % выборки – это тот показатель, который выработан многими исследованиями. Приведем еще немного теории. Чем больше выборка, тем меньше ошибка репрезентативности и точнее результат исследования. Чем ближе будет выборочная совокупность к генеральной по количеству единиц, тем более точными и правильными будут результаты. Ведь если исследовать всю систему, тогда результат будет 100 %. Но здесь уже нет выборки. Это те исследования, в которых исследуется весь массив, все единицы, поэтому это нас не интересует.
  2. В случае нецелесообразности обработки 20 % генеральной совокупности допускается изучение единиц совокупности в количестве не менее 1001. Это также один из показателей исследования массива объекта исследования, который выработался со временем. Конечно же, он не даст точных результатов при больших массивах исследования, но максимально приблизит к возможной точности выборки.
  3. В статистике существует множество формул и сведенных таблиц. В зависимости от объекта исследования и от критерия выборки, существует целесообразность выбора той или иной формулы. Но этот пункт используется в сложных и многоэтапных исследованиях.

Погрешность (ошибка) репрезентативности

Главной характеристикой качества выбранной выборки является понятие «погрешности репрезентативности». Что же это такое? Это определенные расхождения между показателями выборочного и сплошного наблюдения. По показателям погрешности репрезентативность делят на надежную, обычную и приближенную. Иначе говоря, допустимыми являются отклонения в размере до 3 %, от 3 до 10 % и от 10 до 20 % соответственно. Хотя в статистике желательно, чтобы погрешность не превышал 5-6 %. В противном случае есть повод говорить о недостаточной репрезентативности выборки. Для вычисления погрешности репрезентативности и того, как она влияет на выборочную или генеральную совокупность, во внимание берутся многие факторы:

  1. Вероятность, с которой необходимо получить точный результат.
  2. Количества единиц выборочной совокупности. Как уже упоминалось ранее, чем меньше единиц составит выборка, тем больше будет ошибка репрезентативности, и наоборот.
  3. Однородность исследуемой совокупности. Чем более разнородной является совокупность, тем больше будет погрешность репрезентативности. Возможность совокупности быть репрезентативной зависит от однородности всех ее составляющих единиц.
  4. Способ отбора единиц в выборочную совокупность.

В конкретно заданных исследованиях процент погрешности среднего значения обычно задается самим исследователем на основании программы наблюдения и согласно данным ранее проведенных исследований. Как правило, считается допустимой предельная ошибка выборки (ошибка репрезентативности) в пределах 3-5 %.


Больше – не всегда лучше

Также стоит помнить, что главное при организации выборочного наблюдения - это доведение его объема до допустимого минимума. При этом не следует стремиться к чрезмерному уменьшению границ погрешности выборки, так как это может привести к неоправданному увеличению объема данных выборки и, следовательно, к повышению расходов на проведение выборочного наблюдения.

В то же время нельзя и чрезмерно увеличивать размер погрешности репрезентативности. Ведь в этом случае, хотя и произойдет уменьшение объема выборочной совокупности, это приведет к ухудшению достоверности полученных результатов.

Какие вопросы обычно ставится перед исследователем

Любое исследование если и проводится, то для какой-то цели и для получения каких-то результатов. При проведении выборочного исследования, как правило, ставятся начальные вопросы:

  1. Определение необходимого количества единиц выборочной совокупности, то есть то, сколько единиц будет исследоваться. К тому же, для точного исследования совокупность должна быть репрезентативной.
  2. Расчет погрешности репрезентативности с установленным уровнем вероятности. Сразу стоит отметить, что выборочных исследований не бывает с уровнем вероятности 100 %. Если та инстанция, которая проводила изучение определенного сегмента, утверждает, что их результаты точны с вероятностью 100 %, то это ложь. Многолетняя практика уже установила процент вероятности правильно проведенного выборочного исследования. Этот показатель равняется 95,4 %.

Способы отбора единиц исследования в выборку

Не каждая выборка является репрезентативной. Иногда один и тот же признак по-разному выражен в целом и в ее части. Для достижения требований репрезентативности целесообразным является использование различных приемов создания выборки. Причем использование того или иного способа зависит от конкретных обстоятельств. Среди таких приемов создания выборки выделяют:

  • случайный отбор;
  • механический отбор;
  • типичный отбор;
  • серийный (гнездовой) отбор.

Случайный отбор представляет собой систему мероприятий, направленных на случайный отбор единиц совокупности, когда вероятность попасть в выборку является равной для всех единиц генеральной совокупности. Этот прием целесообразно применять только в случае однородности и небольшого количества присущих ей признаков. В противном случае некоторые характерные черты рискуют быть не отраженным в выборке. Признаки случайного отбора лежат в основе всех других способов построения выборки.

При механическом отбор единиц проводится через определенный интервал. Если необходимо сформировать выборку конкретных преступлений, можно изымать из всех карточек статистического учета зарегистрированных преступлений каждую 5-ю, 10-ю или 15-ю карточку в зависимости от их общего количества и имеющихся размеров выборки. Недостатком этого способа является то, что перед отбором необходимо иметь полный учет единиц совокупности, затем нужно провести ранжирование и только после этого можно проводить выборку с определенным интервалом. Этот метод занимает много времени, поэтому он и не часто используется.


Типичный (районированный) отбор – вид выборки, при котором генеральную совокупность разделяют на однородные группы по определенному признаку. Иногда исследователи употребляют вместо «групп» другие термины: «районы» и «зоны». Затем из каждой группы в случайном порядке отбирается определенное количество единиц пропорционально удельному весу группы в общей совокупности. Типичный отбор часто осуществляется в несколько этапов.

Серийный отбор - это такой метод, при котором отбор единиц проводится группами (сериями) и обследованию подлежат все единицы отобранной группы (серии). Преимуществом этого способа является то, что иногда отобрать отдельные единицы сложнее, чем серии, например, при изучении личности, которая отбывает наказание. В рамках отобранных районов, зон применяется изучение всех единиц без исключения, например, изучение всех лиц, отбывающих наказание в каком-то определенном учреждении.

Выборка

Выборка или выборочная совокупность - множество случаев (испытуемых, объектов, событий, образцов), с помощью определённой процедуры выбранных из генеральной совокупности для участия в исследовании.

Характеристики выборки:

  • Качественная характеристика выборки – кого именно мы выбираем и какие способы построения выборки мы для этого используем.
  • Количественная характеристика выборки – сколько случаев выбираем, другими словами объём выборки.

Необходимость выборки

  • Объект исследования очень обширный. Например, потребители продукции глобальной компании – огромное количество территориально разбросанных рынков.
  • Существует необходимость в сборе первичной информации.

Объём выборки

Объём выборки - число случаев, включённых в выборочную совокупность. Из статистических соображений рекомендуется, чтобы число случаев составляло не менее 30-35.

Зависимые и независимые выборки

При сравнении двух (и более) выборок важным параметром является их зависимость. Если можно установить гомоморфную пару (то есть, когда одному случаю из выборки X соответствует один и только один случай из выборки Y и наоборот) для каждого случая в двух выборках (и это основание взаимосвязи является важным для измеряемого на выборках признака), такие выборки называются зависимыми . Примеры зависимых выборок:

  • пары близнецов,
  • два измерения какого-либо признака до и после экспериментального воздействия,
  • мужья и жёны
  • и т. п.

В случае, если такая взаимосвязь между выборками отсутствует, то эти выборки считаются независимыми , например:

Соответственно, зависимые выборки всегда имеют одинаковый объём, а объём независимых может отличаться.

Сравнение выборок производится с помощью различных статистических критериев:

  • и др.

Репрезентативность

Выборка может рассматриваться в качестве репрезентативной или нерепрезентативной.

Пример нерепрезентативной выборки

  1. Исследование с экспериментальной и контрольной группами, которые ставятся в разные условия.
    • Исследование с экспериментальной и контрольной группами с привлечением стратегии попарного отбора
  2. Исследование с использованием только одной группы - экспериментальной.
  3. Исследование с использованием смешанного (факторного) плана - все группы ставятся в разные условия.

Типы выборки

Выборки делятся на два типа:

  • вероятностные
  • невероятностные

Вероятностные выборки

  1. Простая вероятностная выборка:
    • Простая повторная выборка. Использование такой выборки основывается на предположении, что каждый респондент с равной долей вероятности может попасть в выборку. На основе списка генеральной совокупности составляются карточки с номерами респондентов. Они помещаются в колоду, перемешиваются и из них наугад вынимается карточка, записывается номер, потом возвращается обратно. Далее процедура повторяется столько раз, какой объём выборки нам необходим. Минус: повторение единиц отбора.

Процедура построения простой случайной выборки включает в себя следующие шаги:

1. необходимо получить полный список членов генеральной совокупности и пронумеровать этот список. Такой список, напомним, называется основой выборки;

2. определить предполагаемый объем выборки, то есть ожидаемое число опрошенных;

3. извлечь из таблицы случайных чисел столько чисел, сколько нам требуется выборочных единиц. Если в выборке должно оказаться 100 человек, из таблицы берут 100 случайных чисел. Эти случайные числа могут генерироваться компьютерной программой.

4. выбрать из списка-основы те наблюдения, номера которых соответствуют выписанным случайным числам

  • Простая случайная выборка имеет очевидные преимущества. Этот метод крайне прост для понимания. Результаты исследования можно распространять на изучаемую совокупность. Большинство подходов к получению статистических выводов предусматривают сбор информации с помощью простой случайной выборки. Однако метод простой случайной выборки имеет как минимум четыре существенных ограничения:

1. зачастую сложно создать основу выборочногo наблюдения, которая позволила бы провести простую случайную выборку.

2. результатом применения простой случайной выборки может стать большая совокупность, либо совокупность, распределенная по большой географической территории, что значительно увеличивает время и стоимость сбора данных.

3. результаты применения простой случайной выборки часто характеризуются низкой точностью и большей стандартной ошибкой, чем результаты применения других вероятностных методов.

4. в результате применения SRS может сформироваться нерепрезентативная выборка. Хотя выборки, полученные простым случайным отбором, в среднем адекватно представляют генеральную совокупность, некоторые из них крайне некорректно представляют изучаемую совокупность. Вероятность этого особенно велика при небольшом объеме выборки.

  • Простая бесповторная выборка. Процедура построения выборки такая же, только карточки с номерами респондентов не возвращаются обратно в колоду.
  1. Систематическая вероятностная выборка. Является упрощенным вариантом простой вероятностной выборки. На основе списка генеральной совокупности через определённый интервал (К) отбираются респонденты. Величина К определяется случайно. Наиболее достоверный результат достигается при однородной генеральной совокупности, иначе возможны совпадение величины шага и каких-то внутренних циклических закономерностей выборки (смешение выборки). Минусы: такие же как и в простой вероятностной выборке.
  2. Серийная (гнездовая) выборка. Единицы отбора представляют собой статистические серии (семья, школа, бригада и т. п.). Отобранные элементы подвергаются сплошному обследованию. Отбор статистических единиц может быть организован по типу случайной или систематической выборки. Минус: Возможность большей однородности, чем в генеральной совокупности.
  3. Районированная выборка. В случае неоднородной генеральной совокупности, прежде, чем использовать вероятностную выборку с любой техникой отбора, рекомендуется разделить генеральную совокупность на однородные части, такая выборка называется районированной. Группами районирования могут выступать как естественные образования (например, районы города), так и любой признак, заложенный в основу исследования. Признак, на основе которого осуществляется разделение, называется признаком расслоения и районирования.
  4. «Удобная» выборка. Процедура «удобной» выборки состоит в установлении контактов с «удобными» единицами выборки - с группой студентов, спортивной командой, с друзьями и соседями. Если необходимо получить информацию о реакции людей на новую концепцию, такая выборка вполне обоснована. «Удобную» выборку часто используют для предварительного тестирования анкет.

Невероятностные выборки

Отбор в такой выборке осуществляется не по принципам случайности, а по субъективным критериям – доступности, типичности, равного представительства и т.д.

  1. Квотная выборка – выборка строится как модель, которая воспроизводит структуру генеральной совокупности в виде квот (пропорций) изучаемых признаков. Число элементов выборки с различным сочетанием изучаемых признаков определяется с таким расчётом, чтобы оно соответствовало их доле (пропорции) в генеральной совокупности. Так, например, если генеральная совокупность у нас представлена 5000 человек, из них 2000 женщин и 3000 мужчин, тогда в квотной выборке у нас будут 20 женщин и 30 мужчин, либо 200 женщин и 300 мужчин. Квотированные выборки чаще всего основываются на демографических критериях: пол, возраст, регион, доход, образование и прочих. Минусы: обычно такие выборки нерепрезентативны, т.к. нельзя учесть сразу несколько социальных параметров. Плюсы: легкодоступный материал.
  2. Метод снежного кома. Выборка строится следующим образом. У каждого респондента, начиная с первого, просятся контакты его друзей, коллег, знакомых, которые подходили бы под условия отбора и могли бы принять участие в исследовании. Таким образом, за исключением первого шага, выборка формируется с участием самих объектов исследования. Метод часто применяется, когда необходимо найти и опросить труднодоступные группы респондентов (например, респондентов, имеющих высокий доход, респондентов, принадлежащих к одной профессиональной группе, респондентов, имеющих какие-либо схожие хобби/увлечения и т.д.)
  3. Стихийная выборка – выборка так называемого «первого встречного». Часто используется в теле- и радиоопросах. Размер и состав стихийных выборок заранее не известен, и определяется только одним параметром – активностью респондентов. Минусы: невозможно установить какую генеральную совокупность представляют опрошенные, и как следствие – невозможность определить репрезентативность.
  4. Маршрутный опрос – часто используется, если единицей изучения является семья. На карте населённого пункта, в котором будет производиться опрос, нумеруются все улицы. С помощью таблицы (генератора) случайных чисел отбираются большие числа. Каждое большое число рассматривается как состоящее из 3-х компонентов: номер улицы (2-3 первых числа), номер дома, номер квартиры. Например, число 14832: 14 – это номер улицы на карте, 8 – номер дома, 32 – номер квартиры.
  5. Районированная выборка с отбором типичных объектов. Если после районирования из каждой группы отбирается типичный объект, т.е. объект, который по большинству изучаемых в исследовании характеристик приближается к средним показателям, такая выборка называется районированной с отбором типичных объектов.

6.Модальная выборка. 7.экспертная выборка. 8.Гетерогенная выборка.

Стратегии построения групп

Отбор групп для их участия в психологическом эксперименте осуществляется с помощью различных стратегий, которые нужны для того, чтобы обеспечить максимально возможное соблюдение внутренней и внешней валидности .

Рандомизация

Рандомизация , или случайный отбор , используется для создания простых случайных выборок. Использование такой выборки основывается на предположении, что каждый член популяции с равной вероятностью может попасть в выборку. Например, чтобы сделать случайную выборку из 100 студентов вуза , можно сложить бумажки с именами всех студентов вуза в шляпу, а затем достать из неё 100 бумажек - это будет случайным отбором (Гудвин Дж., с. 147).

Попарный отбор

Попарный отбор - стратегия построения групп выборки, при котором группы испытуемых составляются из субъектов, эквивалентных по значимым для эксперимента побочным параметрам. Данная стратегия эффективна для экспериментов с использованием экспериментальных и контрольных групп с лучшим вариантом - привлечением близнецовых пар (моно- и дизиготных), так как позволяет создать...

Стратометрический отбор

Стратометрический отбор - рандомизация с выделением страт (или кластеров). При данном способе формирования выборки генеральная совокупность делится на группы (страты), обладающие определёнными характеристиками (пол , возраст , политические предпочтения, образование , уровень доходов и др.), и отбираются испытуемые с соответствующими характеристиками.

Приближённое моделирование

Приближённое моделирование - составление ограниченных выборок и обобщение выводов об этой выборке на более широкую популяцию. Например, при участии в исследовании студентов 2-го курса университета, данные этого исследования распространяются на «людей в возрасте от 17 до 21 года». Допустимость подобных обобщений крайне ограничена.

Приближенное моделирование – формирование модели, которая для четко оговоренного класса систем (процессов) описывает его поведение (или нужные явления) с приемлемой точностью.

Примечания

Литература

Наследов А. Д. Математические методы психологического исследования. - СПб.: Речь, 2004.

  • Ильясов Ф. Н. Репрезентативность результатов опроса в маркетинговом исследовании // Социологические исследования. 2011. № 3. С. 112-116.

См. также

  • В некоторых типах исследований выборку делят на группы:
    • экспериментальная
    • контрольная
  • Когорта

Ссылки

  • Понятие выборки. Основные характеристики выборки. Типы выборки

Wikimedia Foundation . 2010 .

Синонимы :
  • Щепкин, Михаил Семёнович
  • Генеральная совокупность

Смотреть что такое "Выборка" в других словарях:

    выборка - группа испытуемых, представляющих определенную популяцию и отобранных для эксперимента или исследования. Противоположное понятие совокупность генеральная. Выборка есть часть совокупности генеральной. Словарь практического психолога. М.: АСТ,… … Большая психологическая энциклопедия

    выборка - выборка Часть генеральной совокупности элементов, которая охватывается наблюдением (часто ее называют выборочной совокупностью, а выборкой — сам метод выборочного наблюдения). В математической статистике принят… … Справочник технического переводчика

    Выборка - (sample) 1. Небольшое количество товара, отобранное, чтобы представлять все его количество. См.: продажа по образцу (sale by sample). 2. Небольшое количество товара, переданное потенциальным покупателям, чтобы дать им возможность провести его… … Словарь бизнес-терминов

    Выборка - часть генеральной совокупности элементов, которая охватывается наблюдением (часто ее называют выборочной совокупностью, а выборкой сам метод выборочного наблюдения). В математической статистике принят принцип случайного отбора; это… … Экономико-математический словарь

    ВЫБОРКА - (sample) Произвольный отбор подгруппы элементов из основной совокупности, характеристики которых используются для оценки всей совокупности в целом. Выборочный метод используется, когда слишком долго или слишком дорого обследовать всю совокупность … Экономический словарь

    выборка - См … Словарь синонимов