Аккумуляторная батарея история до наших дней. Новые виды аккумуляторов приходят на смену литий-ионным батареям

Аккумуляторная батарея история до наших дней. Новые виды аккумуляторов приходят на смену литий-ионным батареям
Аккумуляторная батарея история до наших дней. Новые виды аккумуляторов приходят на смену литий-ионным батареям

Каждый год количество устройств в мире, которые работают от аккумуляторных батарей, неуклонно возрастает. Не секрет, что самым слабым звеном современных устройств являются именно аккумуляторы. Их приходиться регулярно подзаряжать, они обладают не такой большой емкостью. Существующие аккумуляторные батареи с трудом позволяют добиваться автономной работы планшета или мобильного компьютера в течение нескольких дней.

Поэтому производители электромобилей, планшетов и смартфонов сегодня заняты поиском возможностей сохранения значительных объемов энергии в более компактных объемах самого аккумулятора. Несмотря на разные требования, предъявляемые к батареям для электромобилей и мобильных устройств, между ними можно легко провести параллели. В частности, известный электрокар Tesla Roadster питается от литий-ионной батареи, разработанной специально для ноутбуков. Правда, для обеспечения электроэнергией спортивного автомобиля инженерам пришлось использовать более шести тысяч таких элементов питания одновременно.

Идет ли речь об электромобиле или мобильных устройствах, универсальные требования к аккумулятору будущего очевидны – он должен быть меньше, легче и накапливать значительно больше энергии. Какие перспективные разработки в этой области могут удовлетворить данные требования?

Литий-ионные и литиево-полимерные батареи

Литий-ионный аккумулятор фотоаппарата

На сегодняшний день в мобильных устройствах наибольшее распространение получили литий-ионные и литиево-полимерные батареи. Что касается литий-ионных аккумуляторов (Li-Ion), то они производятся еще с начала 90-х годов. Их главное преимущество – достаточно высокая энергетическая плотность, то есть способность сохранять определенный объем энергии на одну единицу массы. Кроме того, в таких батареях отсутствует пресловутый «эффект памяти» и имеется сравнительно низкий саморазряд.

Использование лития вполне обоснованно, ведь этот элемент обладает высоким электрохимическим потенциалом. Недостатком всех литиево-ионных батарей, коих на самом деле в настоящее время насчитывается большое количество видов, является достаточно быстрое старение аккумулятора, то есть резкое снижение характеристик при хранении или длительном использовании батареи. К тому же, потенциал емкости современных литий-ионных батарей, судя по всему, уже практически исчерпан.

Дальнейшим развитием литий-ионной технологии являются литиево-полимерные источники питания (Li-Pol). В них вместо жидкого электролита используется твердый материал. В сравнении со своим предшественником, литиево-полимерные батареи имеют более высокую энергетическую плотность. Вдобавок, теперь стало возможным производить батареи практически в любой форме (литий-ионная технология требовала только цилиндрической или прямоугольной формы корпуса). Такие батареи обладают небольшими габаритами, что позволяет с успехом применять их в различных мобильных устройствах.

Однако появление литиево-полимерных батарей кардинальным образом не изменило ситуацию, в частности, потому, что такие батареи не способны отдавать большие токи разряда, а их удельная емкость все же недостаточна, чтобы избавить человечество от необходимости постоянной подзарядки мобильных устройств. Плюс ко всему, литиево-полимерные аккумуляторы довольно «капризны» в эксплуатации, они имеют недостаточную прочность и склонность к возгоранию.

Перспективные технологии

В последние годы ученые и исследователи в различных странах активно работают над созданием более совершенных технологий аккумуляторных батарей, способных уже в ближайшем будущем прийти на смену существующим. В этом плане можно выделить несколько наиболее перспективных направлений:

— Литий-серные батареи (Li-S)

Литий-серный аккумулятор – перспективная технология, энергоемкость подобной батареи в два раза выше, чем у литий-ионных. Но в теории она может быть еще выше. В таком источнике питания используется жидкий катод с содержанием серы, при этом он отделен от электролита особой мембраной. Именно за счет взаимодействия литиевого анода и серосодержащего катода была существенно увеличена удельная емкость. Первый образец подобного аккумулятора появился еще в 2004 году. С того момента был достигнут определенный прогресс, благодаря чему усовершенствованный литий-серный аккумулятор способен выдерживать полторы тысячи циклов полной зарядки-разрядки без серьезных потерь в емкости.

К преимуществам данного аккумулятора также можно отнести возможность применения в широком диапазоне температур, отсутствие необходимости в использовании усиленных компонентов защиты и сравнительно низкую себестоимость. Интересный факт – именно благодаря применению такого аккумулятора в 2008 году был поставлен рекорд по продолжительности полета на воздушном судне на солнечных батареях. Но для массового выпуска литиево-серного аккумулятора ученым еще придется решить две основные проблемы. Требуется найти эффективный способ утилизации серы, а также обеспечить стабильную работу источника питания в условиях смены температурного или влажностного режима.

— Магниево-серные батареи (Mg/S)

Обойти традиционные литиевые батареи могут и аккумуляторы, базирующиеся на соединении магния и серы. Правда, до последнего времени никто не мог обеспечить взаимодействие этих элементов в одной ячейке. Сам магниево-серный аккумулятор выглядит очень интересным, ведь его энергетическая плотность может доходить до более чем 4000 Вт-ч/л. Не так давно благодаря американским исследователям, по всей видимости, удалось решить основную проблему, стоящую на пути разработки магниево-серных батарей. Дело в том, что для пары магний и сера не было никакого подходящего электролита, совместимого с этими химическими элементами.

Однако ученые сумели создать такой приемлемый электролит за счет образования особых кристаллических частиц, обеспечивающих стабилизацию электролита. Образец магниево-серного аккумулятора включает в себя анод из магния, сепаратор, катод из серы и новый электролит. Впрочем, это только первый шаг. Перспективный образец, к сожалению, пока не отличается долговечностью.

— Фторид-ионные батареи

Еще один интересный источник питания, появившийся в последние годы. Здесь за перенос зарядов между электродами отвечают анионы фтора. При этом анод и катод содержат металлы, преобразующиеся (в соответствии с направлением тока) во фториды, либо восстанавливающиеся обратно. Благодаря этому обеспечивается значительная емкость батареи. Ученые заявляют, такие источники питания имеют энергетическую плотность, в десятки раз превосходящую возможности литий-ионных батареек. Помимо значительной емкости, новые аккумуляторы также могут похвастаться существенно меньшей пожароопасностью.

На роль основы твердого электролита было перепробовано множество вариантов, но выбор, в конечном счете, остановился на лантане бария. Хотя фторид-ионная технология кажется очень перспективным решением, она не лишена недостатков. Ведь твердый электролит может стабильно функционировать лишь при высоких температурах. Поэтому перед исследователями стоит задача отыскать жидкий электролит, способный успешно работать при обычной комнатной температуре.

— Литий-воздушные батареи (Li-O2)

В наши дни человечество стремится к использованию более «чистых» источников энергии, связанных с генерацией энергии солнца, ветра или воды. В этом плане очень интересными представляются литий-воздушные батареи. В первую очередь, они рассматриваются многими экспертами в качестве будущего электромобилей, но с течением времени могут найти применение и в мобильных устройствах. Такие источники питания обладают очень высокой емкостью и при этом сравнительно малыми размерами. Принцип их работы следующий: вместо оксидов металла в позитивном электроде применяется углерод, который вступает в химическую реакцию с воздухом, в результате чего создается ток. То есть для выработки энергии здесь частично используется кислород.

Использование кислорода в качестве активного материала катода имеет свои существенные преимущества, ведь он является практически неисчерпаемым элементом, а самое главное, абсолютно бесплатно берется из окружающей среды. Считается, что плотность энергии у литий-воздушных батарей сможет достигать впечатляющей отметки в 10 000 Втч/кг. Может быть, в недалеком будущем подобные батареи смогут поставить электромобили в один ряд с машинами на бензиновом двигателе. Кстати, аккумуляторы подобного типа, выпущенные для мобильных гаджетов, уже можно встретить в продаже под названием PolyPlus.

— Литий-нанофосфатные батареи

Литий-нанофосфатные источники питания – это следующее поколение литиево-ионных батареек, которые характеризуются высокой отдачей тока и сверхбыстрой зарядкой. Для полной зарядки такой батареи требуется всего пятнадцать минут. Они также допускают в десять раз больше циклов зарядки в сравнении со стандартными литий-ионными элементами. Таких характеристик удалось добиться благодаря использованию особых наночастиц, способных обеспечить более интенсивный поток ионов.

К достоинствам литий-нанофосфатных батарей можно отнести также слабый саморазряд, отсутствие «эффекта памяти» и способность работать в условиях широкого диапазона температур. Литий-нанофосфатные батареи уже доступны в продаже и применяются для некоторых типов устройств, однако их распространению мешает необходимость в специальном зарядном устройстве и больший вес в сравнении с современными литий-ионными или литийево-полимерными аккумуляторами.

В действительности, перспективных технологий в области создания аккумуляторных батарей гораздо больше. Ученые и исследователи работают не только над созданием принципиально новых решений, но и над улучшением характеристик существующих литий-ионных батареек. Например, за счет использования кремниевых нанопроводов или разработки нового электрода, обладающего уникальной способностью к «самозаживлению». В любом случае уже не за горами тот день, когда наши телефоны и другие мобильные устройства будут жить целые недели без подзарядки.

Клиентская база – база данных компании о всех ее актуальных и потенциальных клиентах (юридических лицах и индивидуальных предпринимателях) во всех , содержащая необходимую информацию для осуществления деловых отношений. Наличие клиентской базы позволяет осуществлять продажи на регулярной основе, анализировать эффективность существующей системы сбыта, выстраивать стратегию и тактику дальнейшего развития бизнеса компании.

В компаниях сферы FMCG выделяют следующие виды клиентской базы:

  1. Общая клиентская база (ОКБ) – база данных клиентов, которые по роду своей деятельности потенциально способны закупать товар компании. Формируется в процессе территорий и других методов анализа рыночной среды. Является основным видом клиентской базы, на основе которой создаются все остальные.
  2. Активная клиентская база (АКБ) – база данных клиентов, которые в отчетном периоде закупили товар как минимум один раз (продолжительность отчетного периода определяется максимальным сроком оборачиваемости товара, в большинстве компаний FMCG отчетным периодом является месяц). АКБ является составной частью ОКБ, содержит не только паспортные данные клиентов, но и историю совершенных продаж.
  3. Неактивная клиентская база (НКБ) – база данных клиентов, которые по роду своей деятельности потенциально способны закупать товар компании, но в отчетном периоде ни разу этого не сделали. Внутри НКБ возможно выделение:
  • Перечня клиентов, которые ранее закупали товар компании, но перестали это делать по каким-либо причинам («спящие» клиенты);
  • Перечня клиентов, которые ранее не закупали товар компании, но готовы это начать делать при определенных условиях;
  • Перечня клиентов, которые ранее не закупали товар компании, и не готовы начать это делать в силу каких-либо объективных или субъективных причин.
  1. Маршрутная клиентская база (МКБ) – база данных клиентов, посещение которых осуществляется в соответствии с регулярными полевых сотрудников. Имеет отношение к розничному , обслуживаемому . Как правило, включает в себя АКБ данного канала сбыта и небольшую, наиболее перспективную часть НКБ с целью поддержания отношений и возобновления сотрудничества.

Иногда в связи с разного рода частными задачами возможно выделение дополнительных видов клиентской базы, например, перечня новых клиентов, перечня клиентов с хроническими проблемами в оплате товара, перечня клиентов, попадающих под условия проведения трейд-маркетинговых акций, и т.д.

Находясь на маршруте с одним из торговых представителей, территориальный менеджер попросил показать ему потенциальные торговые точки на территории. Торговый представитель отвез его в одну из таких точек. Территориальный менеджер решил продемонстрировать, как правильно подключать потенциальные точки, и провел показательную продажу идеи сотрудничества, живописно расписав клиенту все конкурентные преимущества своей компании. Когда в конце территориальный менеджер поинтересовался у клиента, с кем из поставщиков он сейчас работает, получил ответ «Как с кем? С вами…» На немой вопрос в глазах ошарашенного территориального менеджера торговый представитель ответил: «Ну так вы же просили показать потенциальные торговые точки, а у этой еще о-о-очень большой потенциал…»

Сегодня мы отправимся в увлекательную историю развития аккумуляторов, батарей и элементов питания.

Человечество никогда не стояло на месте. С древних времен наших предков интересовал целый спектр всевозможных физических и химических явлений. Ученые постоянно открывали что-то новое. Такое ноу-хау, как правило, сперва напрочь отрицалось наукой, затем о нем забывали, а спустя несколько десятилетий, уже забытого всеми ученого восхваляли и называли «человеком, который изменил мир». Наверняка вы читаете эти строки с устройства, работающего от розетки или имеющего в своем распоряжении один из важнейших элементов – аккумулятор . И если бы 2 700 лет назад древнегреческий философ Фалес не обратил внимание на взаимодействие шерсти и янтаря, если бы в 1600 году не был введен термин электричество, а в 1800 Аллесандро Вольта не заинтересовался пластинами из цинка и меди, возможно современный мир был намного скучнее.

С чего все началось

Наука средневековья – весьма спорное и запутанное явление. Тем не менее, именно существование целого ряда схоластических теорий породило такое понятие, как научно-технический прогресс. До появления первых аккумуляторов пройдет еще более 2,5 тысяч лет, а пока в солнечной Греции дочь философа Фалеса безуспешно пытается очистить янтарное веретено от мелких частичек ворса, ниток и пыли. Как оказалось, смахнуть их не так-то просто.

Во время правления английской королевы Елизаветы I (1533 – 1603) ее лейб-медик Вильям Гильберт Колчестерский всерьез заинтересовался устройством компаса, магнитами, янтарем и прочими драгоценными камнями, которые после натирания мехом притягивали к себе мелкие частички пергамента. Становилось понятным, что несмотря на определенную схожесть, магнетизм и электричество (термин, введенный самим Гильбертом) имеют совершенно разную природу. Магнит способен притягивать исключительно железо, в то время как электричество, вызванное трением, способно к притяжению частичек неметалического происхождения.

Понятие «притяжение» в средневековье относили к категории «магнитов» . Все дополняющие друг-друга явления, вроде ветра и мельницы, солнца и тепла, мужчины и женщины относили к магнитам. Ненависти собак и кошек, друзей и врагов, льда и огня приписывали категорию «феамидов» , а в магнетизме это понятие подтверждалось северным и южным полюсами магнита. С появлением электричества «магниты» и «феамиды» станут знакомы по маркировкам «плюс» и «минус» , которые можно найти на любом аккумуляторе.

В последующих опытах бургомистра Отто Фон Герике в качестве источника электричества использовался шар из серы . Во время вращения его придерживали руками, а скапливающийся электрический заряд передавался металлическому бруску, который в последствии назовут «лейденской банкой» – главный атрибут престижной средневековой лаборатории, который и стал прообразом современного аккумулятора.

После введения понятия электричество в 1600 году и вплоть до начала XIX века по Европе прокатилась буря опытов, связанных с изучением материалов, способных вызывать так называемый «универсальный временный магнетизм». Тем временем во Франции проводил свои эксперимент ученый, имя которого навсегда осталось нераздельно связанным с любым электрическим прибором.

Великий Вольт

Желая понять природу электричества и в прямом смысле слова «почувствовать его вкус», Алессандро Вольта экспериментировал с монетами, изготовленными из разных металлов . Положив одну из них на язык, а другую под, и соединив их проволокой, Вольта отмечал присутствие характерного кисловатого привкуса . Так острота вкусовых рецепторов человека привела к открытию гальванического электричества , явления, которое еще в середине XVIII века описывал итальянский врач, анатом и физик Луиджи Гальвани , проводя опыты по препарированию лягушек.

Следующим шагом стало конструирование первой электрической батареи , принцип работы которой заключался в погружении медных и цинковых пластин , соединенных последовательно, в раствор кислоты. Изобретение первого химического источника тока, полученного в лабораторных условиях, принято датировать 1798 годом, а его автором стал Аллесандро Вольта.

В течение последующих пяти лет в области исследования гальванических батарей начнется настоящий ажиотаж. 1801 год ознаменовался появлением кратковременного источника питания . Проводя опыты, Готеро (франц. физик), используя воду, платиновые электроды и ток, доказал, что даже после прекращения подачи тока, электроды продолжают излучать электричество. Два года спустя, немецкий химик Иоганн Риттер , заменив платиновые электроды на медные и сформировав из них цепочку пластин, переложенных кусками сукна, сконструировал первый вторичный элемент питания – иными словами, первую аккумуляторную батарею, способную сперва накапливать заряд, а потом постепенного его отдавать без участия «гальванической подпитки».

Пятьдесят медных кружков, смоченной в соленом растворе сукно и вольтов столб положили начало эры аккумуляторов с возможностью многократного цикла заряд-разряд. Появляется новая наука – электрохимия . Начатые в 1854 году немецким врачом Вильгельмом Зингстеденом опыты по использованию свинцовых электродов и их поведению в серной кислоте, спустя пять лет вылились в знаменательное открытие французского инженера Гастона Планте . В 1859 году Планте проводил исследования с листовым свинцом, свернутым в трубочку и разделенным полосами сукна. При погружении в подкисленную воду и под действием тока, свинцовые пластины покрывались активным действующим слоем. Многократное пропускание тока приводило к постепенному росту емкости первой свинцово-кислотной батареи , но рутинное осуществление этого трудоемкого процесса (на изготовление требовалось около 500 часов) приводило к росту конечной стоимости аккумулятора. Более того, потенциальный заряд аккумулятора был сравнительно невелик.

Наследие Зингстедена и Планте будет усовершенствовано через 23 года ученным Камиллом Фором , пересмотревшим процесс изготовления используемых в аккумуляторе пластин. Ускорить формирование активного слоя стало возможным благодаря покрытию пластин окислами свинца . Под действием тока вещество превращалось в перекись, а полученные окислы приобретали пористое строение , способствующее аккумулированию газов на электродах.

Параллельно с разработкой и совершенствованием свинцово-кислотных батарей велась работа и над построением «влажных» элементов Лекланше и их преемников угольно-цинковых аккумуляторов , предложенных в 1888 году Карлом Гасснером и использующихся вплоть до сегодняшнего дня.

В течение длительного периода времени аккумуляторы, электрохимия и все, что было связано с использованием кислых сред, пластин и гальванического электричества будоражило умы исключительно ограниченного круга – ученых, физиков, химиков и врачей. Ситуация кардинально изменилась с появлением в 1827 году динамо-машины – первого электрического генератора постоянного тока. Эволюция генераторов, в свою очередь, подталкивала развитие аккумуляторов и батарей. Узкопрофильные опыты Вольта наконец начали получать промышленное применение.

Промышленная эра аккумуляторов

В 1896 году на территории США, в штате Колумбия открывается компания National Carbon Company (NCC). NCC становится первым предприятием специализацией которого становится серийное производство сухих элементов и батарей . В последующие сто лет Национальную Угольную компанию ждет две стадии ребрендинга: сперва NCC станет Eveready , а сегодня мы знаем ее под именем Energizer .

Предложенный Фором метод заполнения пластин в течение продолжительного времени будет являться основой для построения практически любого типа аккумулятора. В поисках альтернативы морально устаревшему (еще по меркам конца XIX века) свинцово-кислотному аккумулятору и попытках решить две основных проблемы этого некогда революционного источника питания (огромный размер и малоэффективная емкость), в 1901 году легендарный изобретатель Томас Эдисон и Вальдмар Юнгнер одновременно патентуют несвинцовый тип батарей: никель-кадмиевых и никель-железных .

Батарея Юнгнера состояла из положительной пластины, изготовленной из никеля. В качестве отрицательной использовался лист кадмия. Значительное повышение емкости, многократное снижение веса и неприхотливость к регулярности подзарядки не смогли выдержать практического применения в связи с дороговизной процесса изготовления никель-кадмиемых аккумуляторов. Достойной заменой стал предложенный Эдисоном никель-железный элемент, который получил имя щелочного аккумулятора .

Развитие эры электричества, появление мощных промышленных генераторов, трансформаторов и глобальная электрификация приводит к резкому росту популярности портативных элементов питания. Щелочные батареи начинают использовать в корабле- и машиностроении, в транспорте и на электростанциях. На улицах появляются первые электромобили, а конструкторы уже успели сформировать принципы построения аккумуляторных батарей с различным вольтажом.

В поисках идеального корпуса

Опыты с электричеством и попытки построения первых батарей нераздельно были связаны с использованием кислоты или кислой водной среды. Любая жидкость для успешного проведения эксперимента требует соответствующий сосуд, а сбор аккумулятора – свой собственный корпус.

В течение продолжительного времени корпус аккумуляторов изготавливался из дерева . Увы, реакции, происходящие в моменты окисления электродов, и кислотная среда батарей приводили к быстрому разрушению органической оболочки. Дерево заменяют на эбонит – каучук с большим содержанием серы, обладающий высокими электроизоляционными свойствами.

Общепринятым стандартом, использующимся при построении составных аккумуляторов начала XX века, было формирование батареи из нескольких элементов, рабочее напряжение которого составляло 2,2 вольта . Первые «пальчиковые батареи» появились еще в далеком 1907 году. С тех пор внешне они мало в чем изменились. Аккумулятор с напряжением в 6 вольт (три элемента по 2,2 В) оставался эталонным при производстве автомобилей вплоть до начала 50-х годов. Элементы на 12 и 24 Вольта имели более узкую специализацию. В первой половине прошлого века об эстетике в машиностроении никто не задумывался, поэтому любой аккумулятор выглядел весьма неряшливо. Эбонитовый корпус с напичканными элементами и грубыми торчащими перемычками намертво заливался мастикой.

Изобретение немецких ученых Шлехта и Аккермана и демонстрация в 1932 году процесса изготовления прессованных пластин для аккумуляторов не могло не повлиять на внешний вид батарей. В 1941 году в производство корпусов вмешивается австрийская компания Baren , проводившая серию экспериментов по разработке синтетических материалов. Через шесть лет француз Нойман предлагает конструкцию герметичного никель-кадмиевого аккумулятора . Параллельно с этим вся промышленность переходит на батареи с напряжением в 12 вольт , а синтетически полученный американской компанией Johnson Controls полипропилен становится основой для изготовления корпуса любых аккумуляторов. Они стали легче, практичнее, перестали бояться ударов и строгих ограничений при подзарядке.

Настоящее и обозримое будущее

Дальнейшее развитие индустрии аккумуляторных батарей движется настолько стремительно, что проследить за той чередой открытий, которые пришлись на последние пятьдесят лет практически невозможно. На сегодняшний день существует более 30 разновидностей аккумуляторов при построении которых используются два различных электрода, чем и определяется их название: никель-цинковые, литий-титанатные, цинк-хлорные. Среди этого обилия в быту мы сталкиваемся лишь с несколькими.

Причина, по которой мобильные устройства начали свою стремительную эволюцию лишь с начала 90-х годов XX века и за последние 35 лет превратились из громоздких и неповоротливых «чемоданов» в ультракомпактные плоские коробочки, кроется именно в элементах питания.

В 1991 году компания Sony выпускает первый литий-ионный аккумулятор . Этот тип портативных батарей пришел на смену некогда широко использовавшимся никель-кадмиевым (Ni-Cd) и никель-металлгидридным (Ni-MH), изобретенных еще в начале прошлого века.

Литий-ионные аккумуляторы имеют целый ряд преимуществ: они заряжаются на порядок быстрее никелевых, имеют более продолжительный срок эксплуатации и большой запас емкости. Li-ion-аккумуляторы получили широкое распространение в сфере портативной электроники, а предложенные инженерами решения позволили не только значительно увеличить максимальные токи разряда, сделавшие возможным использование этого типа аккумуляторов и в среде мощного оборудования, но и обеспечить внушительный рост емкости.

Любая компания рано или поздно утыкается в потолок продаж. Работа с дистрибьюторами налажена, товар занимает хорошие полки в магазинах, а маркетинговые усилия особого эффекта уже не приносят. Как увеличить продажи качественно? Свой способ предлагает .

Вместо предисловия

Сформировавшийся уровень вторичных продаж (далее по тексту, если не указано иное, под «продажами» подразумеваются продажи товара в торговые точки — продажи «на полку») продукции уже говорит о многом. Прежде всего, это определенные успехи прежней маркетинговой политики, наличие активной клиентской базы, присутствие на полках в магазинах, рабочие механизмы торговой политики, команда и так далее.

Все, что было сделано ранее, уже дало определенные результаты, наработан бесценный опыт взаимодействия с рынком. Осталось понять, какие управленческие решения были эффективны и почему? Что не было сделано, какие процессы можно улучшить?

Следует отметить, что в сложившейся ситуации менеджер чаще всего начинает размахивать шашкой словно «Чапаев на боевом коне», предлагает одну за другой готовые и ранее успешные (на других продуктах и в других компаниях) стратегии продвижения, что в условиях рыночной неопределенности успешно лишь в 50% случаев. Или предлагается «горячая» замена команды и ключевых партнеров (дистрибьюторов), что может просто «опрокинуть» продажи на неопределенное время.

«Крокодил не ловиться, не растет кокос…»

Каждая компания проходит несколько этапов развития продаж продукта (см. Рисунок 1).

На первом этапе развития компания стремится добиться количественной дистрибуции товара. Основные проблемы этапа — создание и отработка цепочки поставок товара в регион, формирование отношений с партнерами (рычаги воздействия, кредитная и бонусная политика), мотивация торгового персонала дистрибьютора для активной работы по формированию максимальной АКБ.

Ключевым показателями этапа являются объемы первичных продаж и АКБ.

На этом этапе, формируется прочный «фундамент» для дальнейшего развития продукта. Естественно, что после освоения 75% АКБ региона темпы роста продаж резко снижаются, а в последующем происходит стагнация. Следует также отметить, что применение методов характерных для этапов качественной дистрибуции сейчас, будет иметь очень низкий показатель ROMI (возврат на маркетинговые инвестиции).

Если производитель товара находится на первом этапе развития, единственным способом качественно увеличить продажи и отдачу от маркетинга в регионе является переход на следующий этап.

Для этого необходимо:

1. Разделить АКБ на сегменты;


Рисунок 1

2. Разработать и внедрить пакеты товара (MML, Top-SKU) и ценовую политику для каждого сегмента;

3. Разработать и внедрить систему KPI для торговых сил;

4. Разработать программу маркетинговой поддержки (преимущественно из комплекса Trade Marketing) для каждого сегмента;

5. Регламентировать бизнес-процессы;

На втором этапе производителем создаются механизмы качественных продаж в регионе, оптимизируется количество дистрибьюторов, набирает свои обороты маркетинговая поддержка.

Принципиальное различие первых двух этапов заключается в том, кто управляет продажами товара. Если на первом этапе продажи товара целиком и полностью зависят от торговых сил, то на втором этапе — кому, какой ассортимент и какое количество продавать определяет производитель.

Ключевая проблема — как добиться увеличения продаж по всем товарным группам при ограниченном полочном пространстве.

Чтобы в корне переломить ситуацию, необходимо объективно (количественно) оценить текущую ситуацию, принимаемые ранее меры и управленческие решения. После чего, приступить к выработке рабочих гипотез, объясняющих низкие темпы продаж и неэффективность маркетинговой поддержки, и разработке «дерева решений».

Здесь важно понимание того, какая стратегия продаж товара существует (и существует ли она вообще), какие мероприятия проводились и с каким эффектом. Что из методов продвижения и управленческих решений привело к позитивным изменениям, а что негативно сказалось на динамике продаж и почему.

Следует провести анализ текущего рыночного положения продукта/компании (для чего существует множество концепций и моделей). В большинстве случаев для выработки управленческих решений достаточно уместить все данные в концепцию Marketing Mix — 4P, например:


Рисунок 2

Можно выделить следующие, наиболее распространенные причины снижения продаж на втором этапе:

1. Снижение продаж, обусловленное ценовой политикой в сегментах сбыта

Часто дистрибьюторские компании нарушают систему ценообразования продукта, в результате продукт может «выпадать» в другой ценовой сегмент и потерять процент целевой аудитории, как следствие — снижение объемов продаж и показателя ROMI.

В данной ситуации необходимо:

  • зафиксировать в соглашении РРЦ механизмы и санкции по их регулированию
  • изменить модель поведения и KPI торговых сил
  • реализовать комплекс мероприятий Trade marketing с целью пропаганды РРЦ в каналах сбыта.

2. Низкий уровень доверия или осведомленности о продукте в торговых точках

Данная ситуация характерна при выходе продукта на новые рынки/сегменты. Также торговые силы могут недостаточно (или некачественно) информировать торговые точки о продукте и проводимых активностях.

В этом случае следует на регулярной основе проводить тренинги по продукту для торговых сил. Также в ходе полевых и аудиторных тренингов сформировать у торговых сил навык качественного и регулярного информирования торговых точек о продукте и проводимых активностях.

3. Снижение продаж, вызванное нестабильностью присутствия Top - SKU в торговых точках

«Качественная дистрибуция» предполагает поддержание 100% рекомендованного ассортимента в 100% торговых точек региона, 100% времени, а не объем продаж в денежном или штучном выражении. Добиться этого возможно только в случае формирования заказа торговым представителем (во многих случаях торговые представители играют роль курьеров, просто развозящих и собирающих прайс-листы).

Первопричина нестабильности — ориентация отдела продаж на выполнение количественных показателей любой ценой. Как результат — «хронические болезни»:

  • торговые силы могут перегрузить торговую точку, что влечет за собой быстрое «вымывание» top-sku и перенасыщение менее ходовыми позициями, что в свою очередь может привести к росту ДЗ, потере полочного пространства и негативному отношению к продукту
  • высокая зависимость от конкретных торговых представителей и неэффективные рычаги воздействия на них

Для решения этой проблемы необходимо переместить фокус с достижения конечного результата на качественное выполнение всех бизнес процессов (от подбора торговых представителей до завершения визита в торговую точку):

  • изменена мотивация торговых сил. Объем продаж разбит на группы и устанавливается в единицах (вес показателя не более 30%).
  • регулярно проводится StoreCheck
  • разработаны и используются единые стандарты торговых сил.

Третий этап развития (недостижимый идеал) — создан и работает механизм «качественных» продаж в регионе. Торговые силы выполнили главную задачу — обеспечили стабильность присутствия продукта в торговых точках. Объем продаж теперь не цель, а следствие торговой политики.

Большое значение в дальнейшем увеличении продаж имеет маркетинговая политика, поскольку реальный объем продаж продукта могут показать только конечные потребители. Задачи маркетинга — (ре)позиционирование продукта, переключение потребителей с конкурирующего продукта.

Вместо заключения

«Как вы будете есть слона? Перед вами убитый слон. Вы откусываете первый кусок слона, пережевываете и глотаете. Потом вы откусываете второй кусок, пережевываете и глотаете. И так — пока вы не съедите всего слона. (Да, порой слон сгниет к моменту, когда вы его съедите полностью.)»

На планете 900 тыс. слонов и, наверное, столько же различных мнений о том, как «увеличить продажи качественно», хотя основных видов только три.

Так же и с продажами. Все множество решений можно свести к простой схеме (Рисунок 3):

Рисунок 3

Рисунок 4

1. Distribution — развитие количественной и качественной дистрибуции, ассортиментная политика;

2. Pricing — адекватная ценовая политика в сегментах;

3. Shelving — доминирование на полочном пространстве;

4. Merchandising — привлечение внимания потребителя в местах продаж.

А «съесть» их можно используя простой алгоритм — Рисунок 4.

Главное помнить,

что «качественные продажи» — это не технология, а философия компании.

Почему именно свинец и серная кислота?

Часто покупатели задают вопрос - а нет ли в продаже более современных АКБ? Почему продавцы предлагают лишь «традиционные» свинцово-кислотные аккумуляторные батареи, изобретенные еще в 1859 году? И почему им на замену не пришли более современные никель-кадмиевые, никель-металлгидридные, литий-ионные аккумуляторы? Они более емкие, в них не содержатся токсичные кислота и свинец.

Ответ простой - у них есть недостатки, недопустимые для автомобильных аккумуляторов. У никель-кадмиевых - высокий уровень саморазряда, «эффект памяти», затрудняющий его подзарядку, и большая, чем у свинца, токсичность кадмия. У никель-металлгидридных уровень саморазряда еще больше. Литий-ионные аккумуляторы взрывоопасные, дорогие и теряют заряд при низких температурах. Зарядить литий-ионную батарею непросто: требуется специальное зарядное устройство, работающее по определенному алгоритму.

Так что «по сумме показателей» именно свинцово-кислотные батареи сегодня остаются оптимальным вариантом из всех возможных.

Кальциевая или «гибридная»?

Покупателей пугает слово «гибридная» на маркировке АКБ. А продавец не всегда может объяснить, в чем заключается эта «гибридность».

Стандартная АКБ состоит из шести последовательно соединенных в одном корпусе аккумуляторных «банок». В каждой банке чередуются положительные и отрицательные пластины электродов, покрытые слоем активной массы - у положительных из диоксида свинца, у отрицательных - из губчатого свинца. Электроды (они делаются в виде решеток) изготавливают из свинцового сплава. Но чистый свинец - материал непрочный, и потому его легируют - добавляют в сплав небольшие порции сурьмы или кальция.

«Чисто» сурьмяных аккумуляторов сегодня практически нет - сурьма является катализатором электролиза воды, и такой аккумулятор часто «закипает». Чтобы решить проблему выкипания, сурьму стали заменять кальцием.

Так что сейчас на рынке продают либо «гибридные» АКБ (положительные электроды с добавкой сурьмы, а отрицательные - с добавкой кальция), либо чисто «кальциевые» (все электроды сделаны из свинцово-кальциевого сплава). У «кальциевой» батареи есть свои преимущества - в частности, низкий уровень саморазряда (потеря 50% емкости за 18-20 месяцев) и минимальный расход воды из-за испарения (1 г/Ач). Однако у них есть недостаток - после двух-трех глубоких разрядов такую АКБ невозможно зарядить. У «гибридной» батареи таких проблем нет. Но расход воды в ней в полтора-два раза больше, чем у «кальциевой», - сказывается наличие сурьмы. И уровень саморазряда выше (потеря половины емкости за 12 месяцев). Но при этом «гибридные» батареи тоже не требуют «обслуживания», то есть долива дистиллированной воды в электролит.

Жидкий или гелевый?

Электроды АКБ помещены в электролит, в раствор серной кислоты. Соответственно, существует два вида батарей: с жидким электролитом и «не жидким» электролитом. Наиболее распространены АКБ с жидким электролитом - как более простые и, соответственно, более дешевые. Кроме того, запаса энергии в них хватает на все потребители в стандартном автомобиле.

По батареям с «не жидким» электролитом (иногда их все скопом ошибочно называют «гелевыми») - вопрос более сложный. Батареи, в которых электролит действительно доведен до состояния геля с помощью силикагелей, в настоящее время используются крайне редко: лишь в мотоциклах, да и то эксклюзивных. В батареях с «не жидким» электролитом все свободное место между электродами заполняется микропористым материалом, который пропитывается электролитом. Это технология AGM (Absorbed Glass Material), которая обеспечивает повышение эффективности активной массы за счет лучшего поглощения кислоты, что дает более высокий пусковой ток, стойкость к глубокому разряду, долговечность. Именно такие АКБ лучше всего подходят для автомобилей с системой Start&Stop и системой рекуперации энергии торможения. Но они - не «гелевые»…

На рынке сегодня востребованы АКБ с «промежуточной» технологией - EFB (Enhanced Flooded Battery). Ее еще называют «технология влажного электрода». В таком аккумуляторе на электроды надеты своеобразные «конверты» из микроволокна. Они тоже удерживают электролит, чем обеспечивает стабильность к циклическому разряду. Но сам аккумулятор заполнен жидким электролитом.

Полярность - Азия или Европа?

Прежде чем предлагать покупателю аккумулятор, стоит спросить у него, в какой стране собран его автомобиль. Потому что азиатские и европейские машины спроектированы под разное расположение клемм на АКБ.

Проще говоря, «прямая», она же «европейская», полярность - это когда при положении батареи «клеммы ближе к вам» плюсовая клемма находится слева, а минусовая - справа. У батареи с «обратной», то есть «азиатской», полярностью все ровно наоборот. Кроме того, у «Европы» и «Азии» может различаться и диаметр контактных клемм. Например, на типе Euro (Type 1) «плюсовая» клемма диаметром 19,5 мм, а «минусовая» - 17,9 мм. А у типа Asia (Type 3) «плюсовая» имеет диаметр 12,7 мм, а «минусовая» - 11,1 мм. Потому на европейскую машину (кстати, сюда входят и «корейцы», собранные у нас в России) установить японский аккумулятор еще можно: существуют переходники с тонких клемм на «толстые» европейские.

Кроме того, существует несколько типоразмеров аккумуляторов. И вполне может быть, что «азиат» просто не встанет на штатное место из-за того, что он меньше или больше…

Что на самом деле важно

Продавцы говорят: покупатель почти всегда не знает, что ему на самом деле нужно. И потому у него возникают все эти вопросы по поводу «кальциевых», «гелевых», «литий-ионных», «японских» АКБ. А потому продавцу важно объяснить покупателю, чего же он хочет - и почему он хочет именно это!

Итак, важнейшими для АКБ являются три параметра.

1. Номинальная электрическая емкость (Ач), она определяется отдаваемой энергией полностью заряженной батареи при двадцатичасовом разряде. Например, обозначение 6СТ-60 значит, что батарея в течение 20 часов будет отдавать ток 3 А и при этом в конце напряжение на клеммах не упадет меньше 10,8 В. Однако это вовсе не означает линейную зависимость времени разряда от разрядного тока. Целый час стабильно отдавать энергию батарея не сможет.

Есть и «неофициальный» параметр - «резервная емкость». Она измеряется в минутах - сколько аккумулятор может работать за себя и за генератор. Например, резервная емкость АКБ легкового автомобиля при нагрузке 25 А и падении напряжения до 10,5 В должна составлять не менее 90 минут.

2. Номинальное напряжение - для АКБ легкового автомобиля оно составляет 12 В. Оно может снизиться при разряде батареи и большой токовой нагрузке. Но экспериментировать, устанавливая АКБ с более высоким напряжением, не стоит…

3. Ток холодной прокрутки (CCA - Cold Cranking Amperes). Этот параметр особо важен в России: он представляет собой величину тока, который батарея способна отдать при температуре -18 о С в течение 10 секунд, напряжением не менее 7,5 В. Чем выше ток холодной прокрутки, тем легче двигатель будет запускаться зимой.

Все эти параметры есть в маркировке на корпусе АКБ.

О чем говорить с покупателем?

Прежде всего, продавец должен выслушать, что у клиента плохо светит, слабо и недолго крутится, а провода для «прикуривания» есть не у всех. И только потом спросить:

а) Сколько лет автомобилю?

б) Страна производства?

в) Ездит ли покупатель зимой или в холодное время ставит его на прикол?

г) Оборудован ли автомобиль Start&Stop и системой рекуперации энергии торможения?

д) Стоит машина ночью в гараже или «под окнами» во дворе?

е) Тюнингован ли автомобиль, установлено ли на нем дополнительное электрооборудование: подогреватели, нештатная осветительная техника и т.д.?

ж) И самый главный вопрос - на какую сумму покупки рассчитывает покупатель?

Если у покупателя «пожилая» или тюнингованная машина, то стоит порекомендовать аккумулятор с большей емкостью, например вместо 50 Ач взять 55 Ач. Но не надо «перебарщивать» - генераторы имеют строго определенную мощность и перегружать их не рекомендуется. Да и вынуждать покупателя платить лишние деньги тоже не стоит.

Если же автомобиль - «внедорожник» или «паркетник» и ездят на нем любители загородных поездок, то как раз им стоит порекомендовать аккумулятор AGM. У таких АКБ довольно высокий, до 135%, ток холодной прокрутки, более высокая устойчивость к циклам и очень высокая способность к глубокому разряду.