Строение бактерий и их классификация. Особенности морфологии и строения микроорганизмов

Строение бактерий и их классификация. Особенности морфологии и строения микроорганизмов
Строение бактерий и их классификация. Особенности морфологии и строения микроорганизмов

Общая часть

ЛАБОРАТОРНАЯ ДИАГНОСТИКА ИНФЕКЦИОННЫХ

Шевченко А.А., Шевченко Л.В., Черных О.Ю., Шевкопляс В.Н.

Краснодарского края

И Департамента науки и образования администрации

При поддержке Российского фонда фундаментальных исследований

КРАСНОДАР

Владимир Николаевич Шевкопляс

Олег Юрьевич Черных

Людмила Васильевна Шевченко

Александр Алексеевич Шевченко

АГРАРНЫЙ УНИВЕРСИТЕТ

КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ

Образования

РОССИЙСКОЙ ФЕДЕРАЦИИ

КРАСНОДАР

ЛАБОРАТОРНАЯ ДИАГНОСТИКА ИНФЕКЦИОННЫХ БОЛЕЗНЕЙ ЖИВОТНЫХ

В.Н. ШЕВКОПЛЯС

О.Ю. ЧЕРНЫХ

Л. В. ШЕВЧЕНКО

А. А. ШЕВЧЕНКО

АГРАРНЫЙ УНИВЕРСИТЕТ

КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ

Образования

РОССИЙСКОЙ ФЕДЕРАЦИИ

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА

Федеральное государственное образовательное

учреждение высшего профессионального

Учебное пособие

БОЛЕЗНЕЙ ЖИВОТНЫХ. Краснодар: КубГАУ, 2009. 584с.

В руководстве изложены основные общие вопросы и методы

лабораторной диагностики инфекционных болезней животных,
вызываемых бактериями и вирусами.

Для студентов высших учебных заведений факультетов
ветеринарной медицины и биологических специальностей.

РЕЦЕНЗЕНТЫ:

И.А. Болоцкий – доктор ветеринарных наук, зав. лабораторией
Краснодарского НИВИ

Ю.Ф. Мишанин – доктор биологических наук, академик РАЕ,
профессор Кубанского государственного технологического
университета.

ФГОУ ВПО «Кубанский государственный аграрный университет»

350044, Краснодар, ул. Калинина, 13

Микро­бы - это в основном одноклеточные бесхлорофилльные организ­мы прокариотического типа. По форме различают шаровидные, палочковидные и извитые микробы (рис. 1).

Рис. 1. Основные формы микроорганизмов (схема):

шаровидные: 1 - стафилококки, 2 - диплококки, 3 -стрептококки, 4 -тетракокки, 5 - сарцины; палочковидные: 6 - бактерии, 7 - стрептобактерии, 8 - бациллы, 9 - стрептобациллы; извитые:
10 - вибрионы, 11 - спириллы, 12 - спирохеты.


Палочковидные, или цилиндрические, формы принято делить на бактерии и бациллы. Бактерии - па­лочковидные формы, не образующие спор (пишут Bact, например Bact. aceti). Бациллы - палочковидные формы, образующие споры (пишут Вас, например Вас. subtilis). Бактерии и бациллы бывают разными по форме и размерам. Концы палочек чаще закруглены, но могут быть срезаны под прямым углом (возбудитель сибирской язвы), иногда сужены. У мелких бактерий разница между длиной и шириной невелика; по внешнему виду они напоминают кокки, в связи с чем такие формы получили название коккобактерии (возбудитель бруцеллеза).

Спорообразующие микроорганизмы окрашиваются в основном по Граму положительно. Большинство из них имеют палочковид­ную форму и лишь Sporosarcina - шаровидную.

Среди палочковидных форм, образующих споры, различают бациллы и клостридии. Бациллы, за исключением Вас. anthracis, подвижны. Бациллы - аэробы. У бацилл споры не превышают толщины вегетативной клетки. Клостридии - анаэробы. Споры толще вегетативной клетки. Такие формы напоминают веретено, ракетку, лимон, барабанную палочку. Клостридии принимают участие во многих процессах в природе. Являются возбудителями анаэробных инфекций. Вызывают аммонификацию белковых ве­ществ, мочевины. Разлагают фосфорорганические соединения. Фиксируют молекулярный азот и др.

Палочки, как и кокки, могут располагаться попарно или це­почкой. При соединении бактерий попарно образуются диплобактерии, при таком же соединении бацилл - диплобациллы. Со­ответственно образуются стрептобактерии и стрептобациллы, если клетки располагаются цепочкой. Тетрад и пакетов палочко­видные формы не образуют, так как они делятся в одной плоско­сти, перпендикулярной продольной оси. Термин «бактерии» применяют для обозначения палочковидных форм, не образую­щих спор, и это правильно, в то время как многие авторы ис­пользуют его как собирательное название разных микроорганиз­мов. Мы считаем, что вместо «бактерии» следует применять сло­во «микроорганизмы», или кратко «микробы».

Извитые формы микробов определяют не только по длине и диаметру, но и по количеству завитков. Вибрионы напоминают по форме запятую. Спириллы - извитые формы, образующие до 3-5 завитков. Спирохеты - тонкие длинные извитые формы с множеством завитков. Они занимают промежуточное положение между бактериями и простейшими. Микобактерии - палочки с боковыми выростами (возбудители туберкулеза, паратуберкулеза). Коринебактерии напоминают микобактерии, но отличаются от них образующимися на концах утолщениями и включениями зерен в цитоплазме (дифтерийная палочка). Нитчатые бактерии - мно­гоклеточные организмы, имеющие форму нити. Миксобактерии - скользящие микробы, по форме напоминающие палочки или ве­ретено. Простекобактерии могут быть треугольной или иной фор­мы. У некоторых из них лучевая симметрия. Свое название такие организмы получили по наличию остроконечных выростов - простек. Размножаются они делением, или почкованием. Так, у тре­угольных форм на одной из вершин образуется почка, которая при достижении размеров материнской клетки отделяется. С помо­щью простек, расположенных на двух других вершинах, происхо­дит улавливание пищи. Простекобактерии обычно неподвижны; подвижные формы образуют круговые движения. Спор не образу­ют, по Граму не окрашиваются. Растут на картофельной среде (агаре) при температуре 28 °С.

Размеры микробов.Микробы - микроскопические организмы. Их размеры определяются в микрометрах(мкм) (10- 6 м по системе СИ). Диаметр шаровидных форм 0,7-1,2 мкм; длина палочковид­ных
1,6-10 мкм, ширина 0,3-1 мкм. Вирусы - еще более мелкие существа. Их размеры определяются в нанометрах(1 нм = 10- 9 м).

Примерные размеры некоторых микробов, мкм

Говоря о бактериях, чаще всего мы представляем нечто негативное. А между тем знаем мы о них очень мало. Строение и жизнедеятельность бактерий достаточно примитивны, но это, по предположениям некоторых ученых, самые древнейшие обитатели Земли, и за столько лет они не исчезли и не вымерли. Многие виды таких микроорганизмов человек использует для своего блага, другие же являются причиной серьезных заболеваний и даже эпидемий. Но вред одних бактерий порой не соизмерим с пользой других. Давайте поговорим об этих удивительных микроорганизмах и познакомимся с их строением, физиологией и классификацией.

Царство бактерий

Это безъядерные, чаще всего одноклеточные микроорганизмы. Их открытие в 1676 году - заслуга голландского ученого А. Левенгука, который впервые разглядел крошечные бактерии под лупой микроскопа. А вот изучать их природу, физиологию и роль в жизни человека впервые начал французский химик и микробиолог Луи Пастер в 1850-х годах. Строение бактерии стало активно исследоваться с появлением электронных микроскопов. Ее клетка состоит из цитоплазматической мембраны, рибосомы и нуклеотида. ДНК бактерии сосредоточена в одном месте (нуклеоплазме) и представляет собой клубок из тонких нитей. Цитоплазма отделена от клеточной стенки цитоплазматической мембраной, в ней находятся нуклеотид, различные мембранные системы, клеточные включения. Рибосома бактерии состоит на 60% из РНК, остальное - белок. На фото ниже изображено строение сальмонеллы.

Клеточная стенка и ее компоненты

Бактерии имеют клеточное строение. Стенка клетки обладает толщиной около 20 нм и, в отличие от высших растений, не имеет фибриллярной структуры. Ее прочность обеспечивается специальным покровом, называемым мешком. Он состоит преимущественно из полимерного вещества - муреина. Его компоненты (субъединицы) соединены в определенной последовательности в особые полигликановые тяжи. Они совместно с короткими пептидами образуют макромолекулу, напоминающую сеть. Это и есть муреиновый мешок.

Органы передвижения

Эти микроорганизмы способны к активному передвижению. Осуществляется оно за счет плазматических жгутиков, имеющих винтообразное строение. Бактерии могут передвигаться со скоростью до 200 мкм в секунду и оборачиваться вокруг своей оси за секунду 13 раз. Способность жгутиков к движению обеспечивается специальным сократительным белком - флагеллином (аналог миозина в мышечных клетках).

Размеры они имеют следующие: длина - до 20 мкм, диаметр - 10-20 нм. Каждый жгутик отходит от базального тельца, которое погружено в оболочку клетки бактерии. Органы передвижения могут быть единичными или располагаться целыми пучками, как, например, у спириллы. Количество жгутиков может зависеть от условий внешней среды. Например, Протеус вульгарис при бедном питании имеет всего два субполярных жгутика, тогда как при нормальных условиях развития в пучках их может быть от 2 до 50.

Движение микроорганизмов

Строение бактерии (схема ниже) таково, что она может достаточно активно передвигаться. Движение в большинстве случаев происходит за счет толчка и осуществляется в основном в жидкой или влажной среде. В зависимости от действующего фактора, другими словами - вида внешнего раздражителя, оно может представлять собой:

  • хемотаксис - это направленное движение бактерии к питательным веществам или, напротив, от каких-либо токсинов;
  • аэротаксис - движение к кислороду (у аэробов) или от него (у анаэробов);
  • фототаксис - реакция на свет, проявляющаяся в движении, характерна прежде всего для фототрофов;
  • магнитотаксис - реакция на изменения в магнитном поле, объясняется наличием у некоторых микроорганизмов специальных частиц (магнетосом).

Одним из перечисленных способов бактерии, особенности строения клетки которых позволяют им передвигаться, могут создавать скопления в местах с оптимальными условиями для их жизнедеятельности. Кроме жгутиков, некоторые виды имеют многочисленные более тонкие нити - их называют "фимбрии" или "пили", но их функция в достаточной мере еще не изучена. Бактерии, которые не имеют специальных жгутиков, способны к скользящему движению, правда, оно характеризуется очень низкой скоростью: примерно 250 мкм в минуту.

Вторая малочисленная группа бактерий - автотрофы. Они способны синтезировать из неорганических веществ органические, частично могут усваивать атмосферный углекислый газ и являются хемотрофами. Эти бактерии занимают весьма важное место в круговороте химических элементов в природе.

Также существуют две группы настоящих фототрофов. Особенности строения бактерий этой категории заключаются в том, что они содержат вещество (пигмент) бактериохлорофилл, родственное по природе растительному хлорофиллу, а так как у них отсутствует фотосистема II, фотосинтез протекает без выделения кислорода.

Размножение делением

Основной способ размножения - это деление исходной материнской клетки надвое (амитоз). У форм, имеющих вытянутую форму, это всегда происходит перпендикулярно продольной оси. Строение бактерии претерпевает при этом кратковременные изменения: от края клетки к середине образуется поперечная перегородка, по которой затем и разделяется материнский организм. Это объясняет старое название царства - Дробянки. Клетки после деления могут оставаться соединенными в неустойчивые, рыхлые цепочки.

Вот такие можно выделить отличительные особенности строения бактерий некоторых видов, например, стрептококков.

Спорообразование и половое размножение

Второй способ размножения - спорообразование. Оно напрямую сопряжено со стремлением приспособиться к неблагоприятным условиям и направлено на то, чтобы их пережить. У некоторых палочковидных бактерий споры образуются эндогенно, то есть внутри клетки. Они очень устойчивы к нагреванию и могут сохраняться даже при длительном кипячении. Образование спор начинается с различных химических реакций в материнской клетке, при этом разлагается около 75% всех ее белков. Затем происходит деление. При этом образуются две дочерние клетки. Одна из них (меньшая) покрывается толстой оболочкой, которая по объему может занимать до 50% - это и есть спора. Она сохраняет жизнеспособность и готовность к прорастанию в течение 200-300 лет.

Некоторые виды способны к половому размножению. Впервые этот процесс открыли в 1946 году, когда изучали строение клетки бактерии Эшерихия коли. Оказалось, что возможен частичный перенос генетического материала. То есть фрагменты ДНК передаются от одной клетки (донора) к другой (реципиенту) в процессе конъюгации. Осуществляется это при помощи бактериофагов или путем трансформации.

Строение бактерии и особенности ее физиологии таковы, что в идеальных условиях процесс деления происходит постоянно и очень быстро (каждые 20-30 минут). Но в естественной среде он ограничен различными факторами (солнечным светом, питательной средой, температурой и др.).

В основу классификации этих микроорганизмов положено различное строение клеточной стенки бактерий, которое обуславливает сохранение анилинового красителя в клетке или его вымывание. Это было выявлено Х. К. Грамом, а впоследствии, в соответствии с его именем были выделены два больших отдела микроорганизмов, о которых мы поговорим ниже.

Грамположительные бактерии: особенности строения и жизнедеятельности

Эти микроорганизмы имеют многослойный муреиновый покров (30-70% от всей сухой массы клеточной стенки), благодаря чему из клеток не вымывается анилиновый краситель (на фото выше слева схематично изображено строение грамположительной бактерии, а справа - грамограмотрицательной). Их особенностью является и то, что диаминопимелиновая кислота часто заменяется лизином. Содержание белка значительно меньше, а полисахариды отсутствуют или связаны ковалентными связями. Все бактерии этого отдела разделены на несколько групп:

  1. Грамположительные кокки. Они представляют собой одиночные клетки или группы по две, четыре и более клеток (до 64), скрепленных между собой целлюлозой. По типу питания это, как правило, облигатные или факультативные анаэробы, например, молочнокислые бактерии из семейства Стрептококковые, но могут быть и аэробы.
  2. Неспорообразующие палочки. По названию уже можно понять строение клетки бактерии. К этой группе относят анаэробные или факультативно аэробные молочнокислые виды из семейства Лактобациллы.
  3. Спорообразующие палочки. Они представлены всего одним семейством - Клостридии. Это облигатные анаэробы, способные образовывать споры. Многие из них формируют характерные цепочки или нити из отдельных клеток.
  4. Коринеморфные микроорганизмы. Внешнее строение клетки бактерии этой группы может значительно меняться. Так, палочки могут становиться булавовидными, короткими, кокками или слабо разветвленными формами. Эндоспоры они не образуют. К ним относятся пропионовокислые, стрептомицетовые бактерии и т. д.
  5. Микоплазмы. Если обратить внимание на строение бактерии (схема на рисунке ниже - стрелка указывает на цепочку ДНК), то можно отметить, что она не имеет клеточной стенки (вместо нее есть цитоплазматическая мембрана) и, следовательно, не окрашивается анилиновым красителем, поэтому ее нельзя отнести к данному отделу на основании окрашивания по Граму. Но согласно последним исследованиям микоплазмы произошли от грамположительных микроорганизмов.

Грамотрицательные бактерии: функции, строение

У таких микроорганизмов сеть муреина очень тонкая, ее доля от сухой массы всей клеточной стенки составляет всего лишь 10%, остальная часть - это липопротеины, липополисахариды т. д. Вещества, поступающие при окрашивании по методу Грама, легко вымываются. По типу питания грамотрицательные бактерии - фототрофы или хемотрофы, некоторые виды способны к фотосинтезу. Классификация внутри отдела находится в процессе формирования, различные семейства объединяют в 12 групп, исходя из особенностей морфологии, обмена веществ и других факторов.


Значение бактерий для человека

Несмотря на свою, казалось бы, незаметность, бактерии имеют огромное значение для человека, как положительное, так и отрицательное. Производство многих пищевых продуктов невозможно без участия отдельных представителей этого царства. Строение и жизнедеятельность бактерий позволяют получать нам многие молочные продукты (сыры, йогурты, кефир и многое другое). Эти микроорганизмы участвуют в процессах квашения, брожения.

Многочисленные виды бактерий являются возбудителями болезней у животных и человека, таких как сибирская язва, столбняк, дифтерия, туберкулез, чума и т. д. Но в то же время микроорганизмы участвуют в различных промышленных производствах: это генная инженерия, получение антибиотиков, ферментов и других белков, искусственное разложение отходов (например, метановое сбраживание сточных вод), обогащение металлов. Некоторые бактерии растут на субстратах, богатых нефтепродуктами, и это служит индикатором при поиске и разработке новых месторождений.

Итак, микробами называются мельчайшие живые организмы, невидимые простым глазом. Как мы узнали из предыдущей главы, к микробам относятся разнообразные формы живой материи, имеющие как клеточную, так и неклеточную организацию.

Различают следующие основные группы микробов: простейшие, микроскопические грибки и дрожжи, актиномицеты, бактерии и спирохеты, риккетсии, фильтрующиеся вирусы.

Каждая группа обладает более или менее характерными для всех представителей группы свойствами, указывающими на общность их происхождения, и различной сложностью организации.

Наиболее высокую степень организации мы находим среди представителей группы простейших. Это одноклеточные организмы животного происхождения. Они обладают сравнительно крупной величиной - до 40–50 микрон (микрон равен одной тысячной доле миллиметра). Их-то в основном и наблюдали в свои лупы первые микроскописты XVII и XVIII веков. Клетка некоторых простейших чрезвычайно сложно устроена. Рассмотрим в качестве примера строение инфузории - одного из наиболее распространённых в природе представителей простейших животных, которого можно найти почти в любой луже (рис. 10). Здесь в одной и той же клетке мы находим и ядро с ядрышком, и многочисленные органы движения - реснички, окружающие толстую клеточную оболочку, и ротовое отверстие с глоткой, и выделительные органы - порошицу, и так называемые сократительные вакуоли, и сложную сеть мельчайших мышечных волоконец, позволяющих инфузории активно изгибаться.


Рис. 10. Простейшие. Инфузория:

Я - ядро; Г - глотка; ПВ - пищеварительная вакуоль; СВ - сократительная вакуоль; П - порошица


Рис. 11. Простейшие. Радиолярия


Рис. 12. Простейшие. Амёба

Более однотипно строение следующей группы микробов - грибков, принадлежащих вместе с актиномицетами и бактериями уже к растительным организмам. Это или одноклеточные или многоклеточные организмы. Клетка состоит из протоплазмы с ядром, окружённой более толстой оболочкой. Тело некоторых микроскопических грибков состоит из многих клеток, соединённых в переплетающиеся нити. Это так называемые плесневые грибки или плесени (рис. 13). Они могут питаться самыми разнообразными органическими веществами и при достаточном количестве влаги часто развиваются на хлебе, крупе, кожаных изделиях, чернилах и других объектах. Хотя плесени состоят из многих клеток, но каждая отдельная клетка способна прорастать в целый организм. Некоторые плесневые грибки имеют большое практическое значение: из них добывают замечательные лекарства, например пенициллин.


Рис. 13. Плесневой грибок пенициллиум:

А - плодовые тела грибка - конидии, сидящие на конидиеносце (Б ); В - нить грибка, так называемая «гифа»

Другие виды микроскопических грибков существуют в виде отдельных овальных или округлых клеток. Это дрожжи. Некоторые виды дрожжей применяются в пищевой промышленности (рис. 14). Среди грибков встречаются и возбудители заразных болезней человека, животных и растений. Особенно часто грибки вызывают различные кожные заболевания: паршу, стригущий лишай, молочницу, эпидермофитию.


Рис. 14. Дрожжи:

А - дрожжевая клетка; Б - клетка в процессе почкования; В - клетка в процессе быстрого почкования и роста; Г - образование спор внутри клетки; Д - прорастание споры

Актиномицеты - группа, промежуточная между грибками и бактериями. Они походят на грибки тем, что тело их также состоит из многих клеток и образует ветвящиеся, переплетающиеся нити, только нити эти гораздо тоньше, чем нити грибков, и приближаются по толщине к бактериям (рис. 15). Сближает их с бактериями также отсутствие обособленных ядер в клетках. Ядерное вещество у актиномицетов и бактерий распределено по всей протоплазме клетки. Эти бактериоподобные грибы чрезвычайно нетребовательны к выбору пищи и питаются такими веществами, которые негодны для питания большинства других организмов. Поэтому актиномицеты очень широко распространены в природе.


Рис. 15. Сравнительная величина нитей актиномицета и плесневого грибка:

а - актиномицета; б - плесневой грибок (увеличение - 500 ?)

Еще проще строение бактерий (рис. 16). Большинство бактерий - одноклеточные организмы величиной от 1 до 5 микрон. По форме своего тела бактерии различаются мало. Известны только три основные формы: шарообразная, палочковидная и извитая. Бактерии, имеющие шарообразную форму, называются кокками, палочковидную - бактериями и бациллами, а извитую - вибрионами и спириллами. Некоторые виды бактерий имеют жгутики, с помощью которых они передвигаются (рис. 17).


Рис. 16. Бактерии:

1–6 - различные виды шарообразных бактерий; 7–9 - палочковидные бактерии; 10–12 - извитые формы бактерий


Рис. 17. Органы движения бактерий - жгутики

При относительном однообразии своей формы бактерии чрезвычайно разнообразны по своим жизненным проявлениям. Многие из них являются возбудителями ряда заразных заболеваний человека - чумы, холеры, брюшного тифа, дизентерии и др. Многие вызывают заразные заболевания животных и растений. Размножаются бактерии поперечным делением на две части. Почти все известные бактерии можно выращивать на искусственных питательных средах.

Следующая группа - риккетсии - является как бы переходной между бактериями и вирусами. По некоторым своим свойствам риккетсии походят на бактерии, а по некоторым - на вирусы. Так же, как бактерии, они имеют клеточное строение, но размеры их клеток чрезвычайно малы - значительно меньше 1 микрона. Они едва видны при рассматривании в микроскоп с увеличением в 1500–2000 раз, но не проходят через фильтры, пропускающие вирусы, чем и отличаются от вирусов.

Все эти свойства - размножение, наследственность, изменчивость, способность к приспособлению и эволюции - присущи только живой материи. Поэтому мы и считаем вирусы живыми.

Итак, мы кратко познакомились со строением основных групп микробов. Оказалось, что в этом мире мельчайших живых тел наблюдается не меньшее разнообразие строения, чем среди видимых невооружённым глазом многоклеточных животных и растений - от нескольких молекул вирусного белка, стоящего на грани неживой материи, но все же обладающего всеми важнейшими свойствами живого, до сложнейшей клетки инфузории.

В одной из следующих глав мы узнаем, как произошли современные микробы. Мы узнаем, что жизнь, эта высшая форма существования материи, возникла не сразу в виде готовой клетки, а через ряд все более и более сложных неклеточных ступеней развития белка. «Прошли, вероятно, тысячелетия, - писал Энгельс, - пока создались условия, при которых стал возможен следующий шаг вперед и из этого бесформенного белка возникла благодаря образованию ядра и оболочки первая клетка» (Ф. Энгельс , Диалектика природы, 1950, стр. 13).

Различные микробы обладают различными размерами. В этом мире невидимых есть и великаны и карлики. По сравнению с частицей вируса полиомиелита (возбудителя, поражающего нервную систему человека) диаметром в 10 тысячных микрона дрожжевая клетка, имеющая в поперечнике 10 микрон, является гигантом, превышающим по своей величине вирус в 1000 раз. А дрожжевая клетка еще не самый крупный микроб. Есть и бактерии-гиганты, например, серная бактерия, так называемая беггиатоа, диаметр ее клетки равен 40 микронам. Но при сравнении величин микробов следует учитывать не только диаметр, а их объёмные размеры. Мелкая бактерия шарообразной формы, называемая стафилококком и вызывающая гноеродные заболевания человека, имеет диаметр, равный 1 микрону. Диаметр шарообразного вируса гриппа равен 1 / 10 микрона. Как будто бы разница не так велика, всего в 10 раз. Но подсчитайте, сколько шариков с диаметром в 1 / 10 микрона можно уложить в шарик диаметром в 1 микрон!

Невольно возникает вопрос: неужели при столь ничтожных величинах микробы могут играть большую роль в природе? Что может сделать тельце, имеющее размеры в тысячи и десятки тысяч раз меньшие, чем песчинка?

Действительно, одна микробная особь слишком мала, чтобы проявить ощутимое действие, но вследствие способности к чрезвычайно быстрому размножению микробы всегда производят работу большими скоплениями, насчитывающими миллиарды отдельных особей.

Средняя скорость деления бактерии, помещённой в искусственную питательную среду, равна 20 минутам. Поэтому одна бактерия уже через 10 часов может дать потомство, насчитывающее до миллиарда и более особей. Правда, по мере размножения в одном и том же объёме питательной среды в ней накапливаются вредные продукты обмена веществ , истощаются и пищевые ресурсы. Поэтому скорость размножения несколько замедляется, а через сутки и почти совсем приостанавливается. Но все же в суточной культуре количество бактерий может дойти до одного-полутора миллиардов в 1 миллилитре питательного мясного бульона. При такой густоте культуры составляющая её масса бактерий становится видимой уже невооружённым глазом: прозрачный при засеве бульон становится мутным.

В естественных условиях существования микробы размножаются также чрезвычайно быстро и образуют большие массы особей в малых объемах. В одной капельке гноя из нарыва можно найти миллионы гноеродных бактерий.

На старых сахарных заводах, где производство не было механизировано, нередко сладкий свекловичный сок, находившийся (в огромных чанах, за 10–12 часов превращался в вязкую слизистую массу, почти целиком состоящую из бактерий, которые превращают свекловичный сахар в вискозу, уже непригодную для сахарного производства. Бактерии эти, называемые лейконостоками, попадают в чан вместе с землёй, пристающей к поверхности свёклы. В почве же число микробов нередко исчисляется десятками миллионов в 1 грамме.

Другим свойством микробов, способствующим сохранению и выживанию их в природе, является исключительная стойкость к вредным воздействиям окружающей среды - температурному воздействию, высушиванию, атмосферному давлению, ядовитым веществам. По своей выносливости многие микробы превосходят в этом отношении все известные нам живые существа. Можно ли себе представить организм, выдерживающий многочасовое пребывание в кипящей воде?

Оказывается, что некоторые бактерии, способные образовывать так называемые споры - тельца с толстой оболочкой и сгущённой, обезвоженной протоплазмой (рис. 18), - в этом состоянии сохраняют жизнеспособность даже после нескольких часов кипячения. Убить такие споры бактерий можно только после прогрева их при температуре 115–125° . Для этого используют специальные приборы, так называемые автоклавы (рис. 19). Эти автоклавы и применяются в лабораториях, хирургических отделениях больниц, на фабриках перевязочных материалов, на консервных заводах - везде, где требуется уничтожить всех (в том числе и наиболее стойких - спорообразующих) бактерий. Процесс этот называется обеспложиванием, или стерилизацией.


Рис. 18. Споры бактерий


Рис. 19. Автоклав

А многие микробы не только переносят, но даже предпочитают высокие температуры. Эти теплолюбивые бактерии прекрасно развиваются и размножаются при температуре 60–70°, т. е. при той температуре, при которой свёртываются и разрушаются белки других организмов. Такие бактерии живут обычно в горячих источниках, в прогреваемых солнцем поверхностных слоях почвы, в гниющем навозе и т. д.

Еще менее чувствительны бактерии к низким температурам, при которых они впадают в состояние оцепенения, но не погибают. Бактерии выдерживают многочасовое пребывание при температуре жидкого водорода –253°. Зимние морозы легко переносят даже такие нежные, не имеющие спор бактерии, как холерный вибрион. Советский микробиолог проф. В. О. Таусон находил в вечно мёрзлой почве Памира на высоте 4000 метров над уровнем моря вполне жизнеспособных бактерий, которые развивались при 0°. А некоторые холодолюбивые микробы развиваются и при температуре –2° - –4°. Они, между прочим, часто являются причиной порчи продуктов в холодильниках. При 40° мороза вирусы сохраняются годами, не теряя заразительности для человека или животных. Некоторые микробы хорошо переносят и высушивание.

Споры бактерий сохраняют жизнеспособность в высушенном состоянии в комках земли десятки лет. В высохшей мокроте больного туберкулёзная палочка сохраняется до 10 месяцев.

Эти два свойства микробов - способность к очень быстрому размножению и устойчивость к вредному действию температуры и высушиванию - дают им возможность выживать в разнообразных условиях существования и, несмотря на свою ничтожную величину, играть большую роль в общем круговороте веществ в природе.

Каким же образом участвуют микробы в круговороте веществ?

Нет места на поверхности нашей планеты , где бы не было микробов. И на Крайнем Севере, и в знойной пустыне, в луже воды и на дне морей и океанов, в стратосфере и на глубине сотен метров под землей - везде можно найти микробов. Множество микробов обитает в почве, на поверхности тела здоровых животных и человека, в его кишечнике и полости рта, в пищевых продуктах. Поверхность тела и кишечник новорожденного уже через несколько часов после рождения заселяются микробами. Можно сказать, что вся жизнь человека, животных и растений проходит в постоянном общении с микробами.

Если мы простерилизуем, т. е. освободим от микробов путём нагревания при 120° какой-нибудь предмет, например кусок бинта, и положим его на стол в комнате, то уже через несколько минут на поверхности бинта окажутся десятки и даже сотни этих невидимых существ, осевших на бинт из воздуха. Бинт станет нестерильным и негодным для перевязки раны. Откуда в воздухе появились микробы? Оказывается, микробы вследствие своего чрезвычайно малого веса могут очень долгое время находиться во взвешенном состоянии в воздухе. А вес микробов так мал, что на 1 грамм приходится 100 миллиардов бактерий! При самых мелких, незаметных для нас движениях воздуха высохшие микробы поднимаются с почвы, с подсохших пищевых продуктов и других мест их обитания и часами плавают в воздухе. Эта способность находиться длительное время во взвешенном состоянии позволяет микробам передвигаться вместе с токами воздуха на громадные расстояния и широко расселяться во внешней среде.

Если микробная клетка в конце концов осядет на благоприятную для ее развития среду, то она выходит из оцепенения и начинает быстро размножаться.

Какие же условия являются благоприятными для жизни микробов? «Жизнь - это способ существования белковых тел, существенным моментом которого является постоянный обмен веществ с окружающей их внешней природой » (Ф. Энгельс , Диалектика природы, 1950, стр. 244).

Для того, чтобы жить, развиваться, размножаться, микроб должен питаться - он должен перерабатывать вещества внешней среды в вещества собственного тела, т. е. усваивать различные химические соединения.

При росте и развитии микробной клетки совершается большая работа. Энергия для этой работы образуется при разложении химических соединений. Это разложение и сопровождается выделением свободной энергии. Обычно свободная энергия выделяется при окислении (соединении с кислородом) различных веществ. Вещества при окислении сгорают. Этот процесс лежит в основе акта дыхания.

Таким образом, микробы, как и все другие живые существа, должны питаться и дышать.

Кроме питания - ассимиляции, в живой клетке идут и процессы обратного порядка - частицы живого тела распадаются и заменяются новыми. В ещё большем количестве распадаются в микробной клетке те химические соединения, которые освобождают необходимую для работы энергию или служат для построения других веществ клеточного тела. Эти два взаимосвязанных процесса - процесс построения вещества своего тела (ассимиляция) и процесс распада (диссимиляция) - и составляют основу обмена веществ, основу жизнедеятельности всего живого.

Возвращаясь к ранее поставленному вопросу о том, какие же условия являются благоприятными для жизнедеятельности микроба, мы можем ответить теперь, что эти условия должны прежде всего предоставлять микробу возможность питаться и получать энергию для работы.

Мы знаем, что для человека и животных эти условия относительно ограничены: для дыхания человеку и животным необходим свободный кислород воздуха, а для питания - сложные готовые органические вещества, обязательно содержащие белки, жиры, углеводы, витамины, минеральные соли и воду. Для животных и человека важно еще, чтобы эти вещества были в усвояемой форме, так как не каждый белок, углевод или жир может быть ассимилирован и превращён в вещества, из которых состоит их собственное тело.

Многие микробы в этом отношении значительно менее притязательны. Любое живое тело состоит из кислорода, водорода, азота, углерода и некоторых простейших минеральных солей. Свою потребность в кислороде и водороде, которые идут на построение их тела, микробы покрывают за счёт воды. В воде всегда находятся и необходимые им минеральные соли, содержащие фосфор, серу, железо и некоторые другие элементы. Потребление же остальных, особенно важных для построения тела элементов - углерода и азота - многие микробы осуществляют не только за счёт белков, жиров и углеводов, но и за счёт почти всех химических соединений, содержащих эти два элемента. Даже свободный азот атмосферы усваивается некоторыми микробами и переводится ими в содержащие азот белковые соединения их тела.

Что же касается выработки энергии, то здесь микробы отличаются еще большим разнообразием. Процесс дыхания человека, животных и растений сводится к окислению - сжиганию свободным кислородом воздуха углеводов (сахара и др.), в результате чего углевод распадается на углекислоту и воду, с выделением значительной тепловой энергии. Микробы могут окислять не только сахара, но и различные другие органические (спирты, аминокислоты) и даже минеральные соединения, например, сероводород, аммиак, соли железа, а также нефть, парафин, воск. Все эти микробы называются аэробами (от греческого слова «аэр» - воздух).

Особенно удивительно, что некоторые микробы могут получать нужную им энергию не только путём окисления питательных веществ свободным кислородом воздуха, но и путём бескислородного распада сложных соединений. При этом окисление (а следовательно, и выделение энергии) происходит за счёт кислорода, который уже находился в связанном состоянии в молекуле расщепляемого сложного соединения. Такие микробы называются анаэробами, они не нуждаются в свободном кислороде воздуха, наоборот, для многих анаэробов кислород является ядовитым веществом. Анаэробный распад безазотистых соединений называется брожением. Брожение виноградного сока при его превращении в вино, скисание молока в простоквашу - все это примеры анаэробного безазотистого распада, производимого микробами.

Ясно, что при таком чрезвычайном разнообразии способов питания и дыхания условия, благоприятствующие жизнедеятельности микробов, оказываются значительно более широкими, чем для человека, животных и высших растений. Становится понятным широчайшее распространение микробов на поверхности нашей земли.

Попав в пищевые продукты, столь богатые высокопитательными соединениями, микробы очень быстро здесь размножаются. На поверхности человеческого тела микробы питаются п?том, клетками эпителия и выделениями сальных желез. В ротовой полости, кишечнике микробы находят просто роскошные условия жизни - тепло, влагу, остатки пищи - и размножаются здесь не хуже, чем в лабораторном бульоне. Некоторым микробам удаётся пробраться и в кровь человека и во внутренние органы его. Преодолевая защитные силы организма, такие болезнетворные микробы быстро здесь размножаются, вызывая в таких случаях заболевания человека.

В почве, воде, на поверхности скал и в глубинах морей и океанов микробы также находят для себя необходимое количество пищи. Некоторые виды микробов способны довольствоваться самыми простейшими соединениями, содержащими углерод и азот, или усваивать такие несъедобные вещества, как каменный уголь, нефть, керосин, нафталин, бензол и даже ядовитую карболовую кислоту, если она даётся в небольших концентрациях (0,05 процента). Ясно поэтому, что развитие микробов нередко совершается в самых трудных для жизни условиях.

Вот эта-то исключительная способность микробов использовать самые различные соединения и определяет их огромную роль в общем круговороте веществ в природе.

<<< Назад
Вперед >>>

17555 0

Бактерии являются прокариотами (рис. 1.2) и существенно отличаются от клеток растений и животных (эукариотов). Они относятся к одноклеточным организмам и состоят из клеточной стенки, цитоплазматической мембраны, цитоплазмы, нуклеоида (обязательных компонентов бактериальной клетки). Некоторые бактерии могут иметь жгутики, капсулы, споры (необязательные компоненты бактериальной клетки).


Рис. 1.2. Комбинированное схематическое изображение прокариотической (бактериальной) клетки со жгутиками.
1 - гранулы полиоксимасляной кислоты; 2 - жировые капельки; 3 - включения серы; 4 - трубчатые тилакоиды; 5 - пластинчатые тилакоиды; 6 - пузырьки; 7 - хроматофоры; 8 - ядро (нуклеоид); 9 - рибосомы; 10 - цитоплазма; 11 - базальное тельце; 12 - жгутики; 13 - капсула; 14 - клеточная стенка; 15 - цитоплазматическая мембрана; 16 - мезосома; 17 - газовые вакуоли; 18 - ламеллярные структуры; 19 -гранулы полисахарида; 20 - гранулы полифосфата

Клеточная стенка

Клеточная стенка представляет собой внешнюю структуру бактерий толщиной 30-35 нм, главным компонентом которой является пептидогликан (муреин). Пептидогликан является структурным полимером, состоящим из чередующихся субъединиц N-ацетилглюкозамина и N-ацетилмурамовой кислоты, соединенных гликозидными связями (рис.
1.3).



Рис. 1.3. Схематическое изображение однослойной структуры пептидогликана


Параллельно расположенные полисахаридные (гликановые) цепи скреплены между собой поперечными пептидными мостиками (рис. 1.4).



Рис. 1.4. Детальное строение структуры пептидогликана Светлые и черные короткие стрелки указывают связи, расщепляемые соответственно лизоцимом (мурамидазой) и специфической муроэндопептидазой


Полисахаридный каркас легко разрушается лизоцимом - антибиотиком животного происхождения. Пептидные связи являются мишенью для пенициллина, который ингибирует их синтез и препятствует формированию клеточной стенки. Количественное содержание пептидогликана влияет на способность бактерий окрашиваться по Граму. Бактерии, имеющие значительную толщину муреинового слоя (90-95%), стойко окрашиваются генцианвиолетом в сине-фиолетовый цвет и носят название грамположительных бактерий.

Грамотрицательные бактерии с тонким слоем пептидогликана (5-10%) в клеточной стенке после действия спирта утрачивают генцианвиолет и дополнительно окрашиваются фуксином в розовый цвет. Клеточные стенки у грамположительных и грамотрицательных прокариот резко различаются как по химическому составу (табл. 1.1), так и по ультраструктуре (рис. 1.5).



Рис. 1.5. Схематическое изображение клеточной стенки у грамположительных (а) и грамотрицательных (б) прокариот: 1 - цитоплазматическая мембрана; 2 - пептидогликан; 3 - периплазматическое пространство; 4 - наружная мембрана; 5 - ДНК


Кроме пептидогликана, в клеточной стенке грамположительных бактерий содержатся тейхоевые кислоты (полифосфатные соединения), в меньшем количестве - липиды, полисахариды, белки.

Таблица 1.1. Химический состав клеточных стенок грамположительных и грамотрицательных прокариот



Грамотрицательные прокариоты имеют наружную мембрану, в состав которой входят липиды (22 %), белки, полисахариды, липопротеины.

Клеточная стенка у бактерий выполняет в основном формообразующую и защитную функции, обеспечивает ригидность, формирует капсулу, определяет способность клеток к адсорбции фагов.

Все бактерии, в зависимости от их отношения к окраске по Граму, делятся на грамположительные и грамотрицательные.

Методика окраски по Граму

1. На мазок кладут фильтровальную бумагу и наливают карболовый раствор генцианового фиолетового на 1-2 мин.
2. Снимают бумагу, сливают краситель и, не промывая мазок водой, наливают раствор Люголя на 1 мин.
3. Сливают раствор Люголя и обесцвечивают препарат в 96 %-м спирте в течение 30 сек.
4. Промывают водой.
5. Красят 1-2 мин водным раствором фуксина.
6. Промывают водой и высушивают.

В результате окраски грамположительные бактерии окрашиваются в фиолетовый цвет, грамотрицательные - в красный.

Причину различного отношения бактерий к окраске по Граму объясняют тем, что после обработки раствором Люголя образуется нерастворимый в спирте комплекс йода с генциановым фиолетовым. Этот комплекс у грамположительных бактерий, в связи со слабой проницаемостью их стенки, не может диффундировать, в то время как у грамотрицательных - легко удаляется при промывании их этанолом, а затем водой.

Бактерии, полностью лишенные клеточной стенки, называются протопластами, они имеют шаровидную форму, обладают способностью к делению, дыханию, синтезу белков, нуклеиновых кислот, ферментов. Протопласты являются неустойчивыми структурами, очень чувствительными к изменениям осмотического давления, механических воздействий и аэрации, не обладают способностью синтезировать составные части клеточной стенки, не подвергаются инфицированию вирусами бактерий (бактериофагами) и не обладают активной подвижностью.

Если под влиянием лизоцима и других факторов происходит частичное растворение клеточной стенки, то бактериальные клетки превращаются в сферические тела, получившие название сферопластов.

Под воздействием некоторых внешних факторов бактерии способны терять клеточную стенку, образуя L-формы (названы в честь института им. Д. Листера, где были впервые выделены); подобная трансформация может быть спонтанной (например, у хламидий) или индуцированной, например, под воздействием антибиотиков. Выделяют стабильные и нестабильные L-формы. Первые не способны к реверсии, а вторые реверсируют в исходные формы после удаления причинного фактора.

Цитоплазматическая мембрана

Цитоплазма бактериальной клетки ограничена от клеточной стенки тонкой полупроницаемой структурой толщиной 5-10 нм, называемой цитоплазматической мембраной (ЦПМ). ЦПМ состоит из двойного слоя фосфолипидов, пронизанных белковыми молекулами (рис. 1.6).


Рис.1.6. Строение плазматической мембраны Два слоя фосфолипидных молекул, обращенных гидрофобными полюсами друг к другу и покрытых двумя слоями молекул глобулярного белка.


С ЦПМ связаны многие ферменты и белки, участвующие в переносе питательных веществ, а также ферменты и переносчики электронов конечных стадий биологического окисления (дегидрогеназы, цитохром-ная система, АТФ-аза).

На ЦМП локализуются ферменты, катализирующие синтез пептидогликана, белков клеточной стенки, собственных структур. Мембрана является также местом превращения энергии при фотосинтезе.

Периплазматическое пространство

Периплазматическое пространство (периплазма) представляет собой зону между клеточной стенкой и ЦПМ. Толщина периплазмы составляет около 10 нм, объем зависит от условий среды и прежде всего от осмотических свойств раствора.

Периплазма может включать до 20 % всей находящейся в клетке воды, в ней локализуются некоторые ферменты (фосфатазы, пермеазы, нуклеазы и др.) и транспортные белки -переносчики соответствующих субстратов.

Цитоплазма

Содержимое клетки, окруженное ЦПМ, составляет цитоплазму бактерий. Та часть цитоплазмы, которая имеет гомогенную коллоидную консистенцию и содержит растворимые РНК, ферменты, субстраты и продукты обмена веществ, обозначается как цитозоль. Другая часть цитоплазмы представлена различными структурными элементами: мезосомами, рибосомами, включениями, нуклеоидом, плазмидами.

Рибосомы - субмикроскопические рибонуклеопротеиновые гранулы диаметром 15-20 нм. В рибосомах находится примерно 80-85 % всей бактериальной РНК. Рибосомы прокариот имеют константу седиментации 70 S. Они построены из двух частиц: 30 S (малая субъединица) и 50 S (большая субъединица) (рис. 1.7).



Рис. 1.7. Рибосома (а) и ее субчастицы - большая (б) и малая (в) Рибосомы служат местом синтеза белка.

Цитоплазматические включения

Нередко в цитоплазме бактерий обнаруживаются различные включения, которые образуются в процессе жизнедеятельности: капельки нейтральных липидов, воска, серы, гранулы гликогена, в-гидроксимасляной кислоты (особенно у рода Bacillus). Гликоген и в-гидроксимасляная кислота служат для бактерий запасным источником энергии.

У некоторых бактерий в цитоплазме находятся кристаллы белковой природы, обладающие ядовитым действием на насекомых.

Некоторые бактерии способны накапливать фосфорную кислоту в виде гранул полифосфата (зерна волютина, метахроматические зерна). Они играют роль фосфатных депо и выявляются в виде плотных образований в форме шара или эллипса, располагающихся в основном у полюсов клетки. Обычно на полюсах бывает по одной грануле.

Нуклеоид

Нуклеоид - ядерный аппарат бактерий. Представлен молекулой ДНК, соответствующей одной хромосоме. Она замкнута, располагается в ядерной вакуоле, не имеет ограничивающей от цитоплазмы мембраны.

С ДНК связано небольшое количество РНК и РНК-полимеразы. ДНК свернута вокруг центрального стержня, состоящего из РНК, и представляет собой высокоупорядоченную компактную структуру. Хромосомы большинства прокариот имеют молекулярную массу в пределах 1-3 х109, константу седиментации 1300-2000 S. Молекула ДНК включает 1,6х10 нуклеотидных пар. Различия в генетическом аппарате прокариотических и эукариотических клеток обусловливают его название: у первых - нуклеоид (образование, подобное ядру), в отличие от ядра у вторых.

В нуклеоиде бактерий содержится основная наследственная информация, которая реализуется в синтезе специфических белковых молекул. С ДНК бактериальной клетки связаны системы репликации, репарации, транскрипции и трансляции.

Нуклеоид в прокариотической клетке может быть выявлен в окрашенных препаратах с помощью светового или фазово-контрастного микроскопа.э

У многих бактерий в цитоплазме обнаружены внехромосомные генетические элементы - плазмиды. Они представляют собой замкнутые в кольца двухцепочечные ДНК, состоящие из 1500-40000 пар нуклеотидов и содержащие до 100 генов.

Капсула

Капсула - слизистый слой клеточной стенки бактерий, состоящий из полисахаридов или полипептидов. Микрокапсулу (толщиной менее 0,2 мкм) способны формировать большинство бактерий.

Жгутики

Жгутики выполняют роль органа движения, позволяющего бактериям передвигаться со скоростью 20-60 мкм/сек. Бактерии могут иметь один или несколько жгутиков, располагающихся по всей поверхности тела либо собранных в пучки у одного полюса, у разных полюсов. Толщина жгутиков в среднем составляет 10-30 нм, а длина достигает 10-20 мкм.

Основу жгутика составляет длинная спиральная нить (фибрилла), которая у поверхности клеточной стенки переходит в утолщенную изогнутую структуру - крюк и прикрепляется к базальной грануле, вмонтированной в клеточную стенку и ЦПМ (рис. 1.8).


Рис. 1.8. Схематическая модель базального конца жгутика Е. coli, основанная на электронных микрофотографиях выделенной органеллы


Базальные гранулы имеют диаметр около 40 нм и состоят из нескольких колец (одна пара - у грамположительных бактерий, четыре - у грамотрицательных прокариот). Удаление пептидогликанового слоя клеточной стенки ведет к потере способности бактерий к движению, хотя жгутики при этом остаются неповрежденными.

Жгутики почти полностью состоят из белка флагеллина с некоторым содержанием углеводов и РНК.

Споры

Некоторые бактерии в конце периода активного роста способны образовывать споры. Этому предшествует обеднение среды питательными веществами, изменение ее рН, накопление ядовитых продуктов метаболизма. Как правило, одна бактериальная клетка образует одну спору - локализация спор различна (центральная, терминальная, субтерминальная - рис. 1.9).



Рис. 1.9. Типичные формы спорообразующих клеток.


Если размеры спор не превышают поперечного размера палочковидной бактерии, то последняя называется бациллой. Когда диаметр споры больше - бактерии имеют форму веретена и носят название клостридий.

По химическому составу различие спор от вегетативных клеток состоит лишь в количественном содержании химических соединений. Споры содержат меньше воды и больше липидов.

В состоянии споры микроорганизмы метаболически неактивны, выдерживают высокую температуру (140-150°С) и воздействие химических дезинфицирующих веществ, длительно сохраняются в окружающей среде.

Попадая в питательную среду, споры прорастают в вегетативные клетки. Процесс прорастания спор включает три стадии: активации, начальной стадии и стадии роста. К активирующим агентам, нарушающим состояние покоя, относят повышенную температуру, кислую реакцию среды, механические повреждения и др. Спора начинает поглощать воду и с помощью гидролитических ферментов разрушает многие собственные структурные компоненты. После разрушения наружных слоев наступает период формирования вегетативной клетки с активацией биосинтеза, заканчивающейся делением клетки.

Л.В. Тимощенко, М.В. Чубик

Бактерии - это большая и важная группа мелких, в основном одноклеточных микроорганизмов. Они принадлежат к растительным организмам, но почти все бактерии не имеют хлорофилла, чем и отличаются от настоящих растений.

От внешней среды клетка отделена плотной оболочкой - клеточной стенкой (рис. 1). У бактерий клеточная стенка очень тонка и достигает толщины 10-20 -6 мм. Это очень важная часть клетки: она определяет ее форму и охраняет от вредных воздействий внешней среды, являясь своеобразным барьером.

Рис. 1. Строение бактериальной клетки: 1 - клеточная стенка; 2 - клеточная мембрана; 3 - цитоплазма; 4 - рибосомы; 5 - жировые включения; 6 - ядерное вещество (нуклеотид с нитями ДНК); 7 - мезосомы.

Внутреннее пространство клетки под мембраной заполнено полужидкой цитоплазмой (протоплазмой). В цитоплазме находятся различные структурные элементы клетки: рибосомы, мезосомы, ядерное вещество и разнообразные включения - запасные питательные вещества. В рибосомах протекает синтез белков, необходимых клетке для ее роста, размножения и замены изношенных частей. Мезосомы - это особые структуры в клетках бактерий, в которых происходит окисление органических веществ и накопление энергии. Среди запасных питательных веществ клетки обнаруживают крахмалоподобное вещество гликоген, азотсодержащее вещество волютин, жиры и др.

К клеточной оболочке примыкает цитоплазматическая мембрана, которая состоит из трех слоев. Она содержит много ферментов и принимает активное участие в обмене веществ клетки, так как транспортирует питательные вещества внутрь и продукты обмена наружу.

Бактерии бывают палочковидной, шаровидной и извитой формы (рис. 2). Шаровидные бактерии называются кокками. Они различаются размерами и взаимным расположением отдельных клеток.

Рис. 2. Формы бактерий: а - микрококки; б - стрептококки; в - диплококки; г - стафилококки; д - палочки; е - вибрионы; ж - спирохеты.

Группы из двух кокков называются диплококками, цепочки из кокков в виде ожерелья - стрептококками, скопления неправильной формы в виде виноградной грозди - стафилококками, группы правильной формы в виде пакетов - сарцинами. Палочковидные бактерии встречаются в виде одиночных клеток, соединенных по две, в виде цепочек, и т. д.

Большое разнообразие форм клеток наблюдается в группе спирально извитых бактерий, которые отличаются длиной, толщиной клеток, а также количеством и характером завитков. Так, бактерии, клетка которых изогнута незначительно (не более чем на 1/4 оборота), называются вибрионами.

Бактерии, имеющие один или несколько правильных завитков, называются спириллами. Бактерии с длинными и тонкими извитыми клетками и многочисленными мелкими завитками называются спирохетами. Существуют также нитчатые формы бактерий: серобактерии, железобактерии и др.

Многие виды бактерий способны к активному движению с помощью специальных органов-жгутиков. Жгутики - это тонкие выросты цитоплазмы, длина которых может во много раз превышать длину клетки. Количество и расположение жгутиков постоянно для каждого вида бактерий.

Бактерии с одним жгутиком на конце называются монотрихами, с пучком жгутиков на конце - лофотрихами. Бактерии, у которых жгутики расположены по периферии клетки, называются перитрихами (рис. 3). Обнаружить жгутики можно с помощью специальной окраски и микроскопирования в темном поле или в электронном микроскопе.

Рис. 3. Основные типы расположения жгутиков у бактерий: а - монотрих; б-г - лофотрихи; д - перитрих.