Называют коррозией металлов. Заводские кузовные технологии

Называют коррозией металлов. Заводские кузовные технологии
Называют коррозией металлов. Заводские кузовные технологии

Коррозия металлов, как известно, приносит много бед. Уж не вам ли, уважаемые автовладельцы, объяснять, чем она грозит: дай ей волю, так от машины одни покрышки останутся. Поэтому, чем раньше начнется борьба с этим бедствием, тем дольше проживет автомобильный кузов.

Чтобы быть успешными в борьбе с коррозией, необходимо выяснить, что же это за «зверь» и понять причины ее возникновения.

Сегодня вы узнаете

Есть ли надежда?

Ущерб, наносимый человечеству коррозией, колоссален. По разным данным коррозия «съедает» от 10 до 25% мировой добычи железа. Превращаясь в бурый порошок, оно безвозвратно рассеивается по белому свету, в результате чего не только мы, но и наши потомки остаемся без этого ценнейшего конструкционного материала.

Но беда не только в том, что теряется металл как таковой, нет — разрушаются мосты, машины, крыши, памятники архитектуры. Коррозия не щадит ничего.

Неизлечимо больна та же Эйфелева башня — символ Парижа. Изготовленная из обычной стали, она неизбежно ржавеет и разрушается. Башню приходится красить каждые 7 лет, отчего ее масса каждый раз увеличивается на 60-70 тонн.

К сожалению, полностью предотвратить коррозию металлов невозможно. Ну, разве что полностью изолировать металл от окружающей среды, например поместить в вакуум. 🙂 Но какой прок от таких «консервированных» деталей? Металл должен «работать». Поэтому единственным способом защиты от коррозии является поиск путей ее замедления.

В незапамятные времена для этого применяли жир, масла, позднее начали покрывать железо другими металлами. Прежде всего, легкоплавким оловом. В трудах древнегреческого историка Геродота (V в. до н.э.) и римского ученого Плиния-старшего уже есть упоминания о применении олова для защиты железа от коррозии.

Интересный случай произошел в 1965 году на Международном симпозиуме по борьбе с коррозией. Некий индийский ученый рассказал об обществе по борьбе с коррозией, которое существует около 1600 лет и членом которого он является. Так вот, полторы тысячи лет назад это общество принимало участие в постройке храмов Солнца на побережье у Конарака. И несмотря на то, что эти храмы некоторое время были затоплены морем, железные балки прекрасно сохранились. Так что и в те далекие времена люди знали толк в борьбе с коррозией. Значит, не все так безнадежно.

Что такое коррозия?

Слово «коррозия» происходит от латинского «corrodo – грызу». Встречаются ссылки и на позднелатинское «corrosio – разъедание». Но так или иначе:

Коррозия – это процесс разрушения металла в результате химического и электрохимического взаимодействия с окружающей средой.

Хотя коррозию чаще всего связывают с металлами, ей также подвергаются бетон, камень, керамика, дерево, пластмассы. Применительно к полимерным материалам, правда, чаще используется термин деструкция или старение.

Коррозия и ржавчина — не одно и то же

В определении коррозии абзацем выше не зря выделено слово «процесс». Дело в том, коррозию частенько отождествляют с термином «ржавчина». Однако это не синонимы. Коррозия — это именно процесс, в то время как ржавчина — один из результатов этого процесса.

Также стоит отметить, что ржавчина — продукт коррозии исключительно железа и его сплавов (таких как сталь или чугун). Поэтому, когда говорим «ржавеет сталь», мы подразумеваем, что ржавеет железо в ее составе.

Если ржавчина относится только к железу, значит другие металлы не ржавеют? Не ржавеют, но это не значит, что они не корродируют. Просто продукты коррозии у них другие.

Например, медь, корродируя, покрывается красивым по цвету зеленоватым налетом (патиной). Серебро на воздухе тускнеет — это на его поверхности образуется налет сульфида, чья тонкая пленка придает металлу характерную розоватую окраску.

Патина — продукт коррозии меди и ее сплавов

Механизм протекания коррозионных процессов

Разнообразие условий и сред, в которых протекают коррозионные процессы, очень широко, поэтому сложно дать единую и всеобъемлющую классификацию встречающихся случаев коррозии. Но не смотря на это, все коррозионные процессы имеют не только общий результат — разрушение металла, но и единую химическую сущность — окисление.

Упрощенно окисление можно назвать процессом обмена веществ электронами. Когда одно вещество окисляется (отдает электроны), другое, наоборот, восстанавливается (получает электроны).

Например, в реакции…

… атом цинка теряет два электрона (окисляется), а молекула хлора присоединяет их (восстанавливается).

Частицы, которые отдают электроны и окисляются, называются восстановителями , а частицы, которые принимают электроны и восстанавливаются, называются окислителями . Два этих процесса (окисление и восстановление) взаимосвязаны и всегда протекают одновременно.

Такие вот реакции, которые в химии называются окислительно-восстановительными, лежат в основе любого коррозионного процесса.

Естественно, склонность к окислению у разных металлов неодинакова. Чтобы понять, у каких она больше, а у каких меньше, вспомним школьный курс химии. Было там такое понятие как электрохимический ряд напряжений (активности) металлов, в котором все металлы расположены слева направо в порядке повышения «благородности».

Так вот, металлы, расположенные в ряду левее, более склонны к отдаче электронов (а значит и к окислению), чем металлы, стоящие правее. Например, железо (Fe) больше подвержено окислению, чем более благородная медь (Cu). Отдельные металлы (например, золото), могут отдавать электроны только при определенных экстремальных условиях.

К ряду активности вернемся немного позднее, а сейчас поговорим об основных видах коррозии.

Виды коррозии

Как уже говорилось, критериев классификация коррозионных процессов существует множество. Так, различают коррозию по виду распространения (сплошная, местная), по типу коррозионной среды (газовая, атмосферная, жидкостная, почвенная), по характеру механических воздействий (коррозионное растрескивание, явление Фреттинга, кавитационная коррозия) и так далее.

Но основным способом классификации коррозии, позволяющим наиболее полно объяснить все тонкости этого коварного процесса, является классификация по механизму протекания.

По этому критерию различают два вида коррозии:

  • химическую
  • электрохимическую

Химическая коррозия

Химическая коррозия отличается от электрохимической тем, что протекает в средах, не проводящих электрический ток. Поэтому при такой коррозии разрушение металла не сопровождается возникновением электрического тока в системе. Это обычное окислительно-восстановительное взаимодействие металла с окружающей средой.

Наиболее типичным примером химической коррозии является газовая коррозия. Газовую коррозию еще называют высокотемпературной, поскольку обычно она протекает при повышенных температурах, когда возможность конденсации влаги на поверхности металла полностью исключена. К такому виду коррозии можно отнести, например, коррозию элементов электронагревателей или сопел ракетных двигателей.

Скорость химической коррозии зависит от температуры — при ее повышении коррозия ускоряется. Из-за этого, например, в процессе производства металлического проката, во все стороны от раскаленной массы разлетаются огненные брызги. Это с поверхности металла скалываются частички окалины.

Окалина — типичный продукт химической коррозии, — оксид, возникающий в результате взаимодействия раскаленного металла с кислородом воздуха.

Помимо кислорода и другие газы могут обладать сильными агрессивными свойствами по отношению к металлам. К таким газам относятся диоксид серы, фтор, хлор, сероводород. Так, например, алюминий и его сплавы, а также стали с высоким содержанием хрома (нержавеющие стали) устойчивы в атмосфере, которая содержит в качестве основного агрессивного агента кислород. Но картина кардинально меняется, если в атмосфере присутствует хлор.

В документации к некоторым антикоррозионным препаратам химическую коррозию иногда называют «сухой», а электрохимическую — «мокрой». Однако химическая коррозия может протекать и в жидкостях. Только в отличие от электрохимической коррозии эти жидкости — неэлектролиты (т.е. не проводящие электрический ток, например спирт, бензол, бензин, керосин).

Примером такой коррозии является коррозия железных деталей двигателя автомобиля. Присутствующая в бензине в качестве примесей сера взаимодействует с поверхностью детали, образуя сульфид железа. Сульфид железа очень хрупок и легко отслаивается, освобождая свежую поверхность для дальнейшего взаимодействия с серой. И так, слой за слоем, деталь постепенно разрушается.

Электрохимическая коррозия

Если химическая коррозия представляет собой не что иное, как простое окисление металла, то электрохимическая — это разрушение за счет гальванических процессов.

В отличие от химической, электрохимическая коррозия протекает в средах с хорошей электропроводностью и сопровождается возникновением тока. Для «запуска» электрохимической коррозии необходимы два условия: гальваническая пара и электролит .

В роли электролита выступает влага на поверхности металла (конденсат, дождевая вода и т.д.). Что такое гальваническая пара? Чтобы понять это, вернемся к ряду активности металлов.

Смотрим. Cлева расположены более активные металлы, справа — менее активные.

Если в контакт вступают два металла с различной активностью, они образуют гальваническую пару, и в присутствии электролита между ними возникает поток электронов, перетекающих от анодных участков к катодным. При этом более активный металл, являющийся анодом гальванопары, начинает корродировать, в то время как менее активный коррозии не подвергается.

Схема гальванического элемента

Для наглядности рассмотрим несколько простых примеров.

Допустим, стальной болт закреплен медной гайкой. Что будет корродировать, железо или медь? Смотрим в ряд активности. Железо более активно (стоит левее), а значит именно оно будет разрушаться в месте соединения.

Стальной болт — медная гайка (корродирует сталь)

А если гайка алюминиевая? Снова смотрим в ряд активности. Здесь картина меняется: уже алюминий (Al), как более активный металл, будет терять электроны и разрушаться.

Таким образом, контакт более активного «левого» металла с менее активным «правым» усиливает коррозию первого.

В качестве примера электрохимической коррозии можно привести случаи разрушения и затопления кораблей, железная обшивка которых была скреплена медными заклепками. Также примечателен случай, который произошел в декабре 1967 года с норвежским рудовозом «Анатина», следовавшим из Кипра в Осаку. В Тихом океане на судно налетел тайфун и трюмы заполнились соленой водой, в результате чего возникла большая гальваническая пара: медный концентрат + стальной корпус судна. Через некоторое время стальной корпус судна начал размягчаться и оно вскоре подало сигнал бедствия. К счастью, экипаж был спасен подоспевшим немецким судном, а сама «Анатина» кое-как добралась до порта.

Олово и цинк. «Опасные» и «безопасные покрытия

Возьмем еще пример. Допустим, кузовная панель покрыта оловом. Олово — очень стойкий к коррозии металл, кроме того, оно создает пассивный защитный слой, ограждая железо от взаимодействия с внешней средой. Значит, железо под слоем олова находится в целости и сохранности? Да, но только до тех пор, пока слой олова не получит повреждение.

А коль уж такое случается, между оловом и железом тут же возникает гальваническая пара, и железо, являющееся более активным металлом, под воздействием гальванического тока начнет корродировать.

Кстати, в народе до сих пор ходят легенды о якобы «вечных» луженых кузовах «Победы». Корни этой легенды таковы: ремонтируя аварийные машины, мастера использовали паяльные лампы для нагрева. И вдруг, ни с того ни с сего, из-под пламени горелки начинает «рекой» литься олово! Отсюда и пошла молва, что кузов «Победы» был полностью облужен.

На самом деле все гораздо прозаичнее. Штамповая оснастка тех лет была несовершенной, поэтому поверхности деталей получались неровными. Вдобавок тогдашние стали не годились для глубокой вытяжки, и образование морщин при штамповке стало обычным делом. Сваренный, но еще не окрашенный кузов приходилось долго готовить. Выпуклости сглаживали наждачными кругами, а вмятины заполняли оловяным припоем, особенно много которого было вблизи рамки ветрового стекла. Только и всего.

Ну, а так ли «вечен» луженый кузов, вы уже знаете: он вечен до первого хорошего удара острым камешком. А их на наших дорогах более чем достаточно.

А вот с цинком картина совсем иная. Здесь, по сути, мы бьем электрохимическую коррозию ее же оружием. Защищающий металл (цинк) в ряду напряжений стоит левее железа. А значит при повреждении будет разрушаться уже не сталь, а цинк. И только после того, как прокорродирует весь цинк, начнет разрушаться железо. Но, к счастью, корродирует он очень и очень медленно, сохраняя сталь на долгие годы.

а) Коррозия луженой стали: при повреждении покрытия разрушается сталь. б) Коррозия оцинкованной стали: при повреждении покрытия разрушается цинк, защищая от коррозии сталь.

Покрытия, выполненные из более активных металлов называются «безопасными », а из менее активных - «опасными ». Безопасные покрытия, в частности оцинковка, давно и успешно применяются как способ защиты от коррозии автомобильных кузовов.

Почему именно цинк? Ведь помимо цинка в ряду активности относительно железа более активными являются еще несколько элементов. Здесь подвох вот в чем: чем дальше в ряду активности находятся друг от друга два металла, тем быстрее разрушение более активного (менее благородного) . А это, соответственно, сокращает долговечность антикоррозионной защиты. Так что для автомобильных кузовов, где помимо хорошей защиты металла важно достичь и продолжительного срока действия этой защиты, оцинковка подходит как нельзя лучше. Тем более, что цинк доступен и недорог.

Кстати, а что будет, если покрыть кузов, например, золотом? Во-первых, будет ох как дорого! 🙂 Но даже если золото стало бы самым дешевым металлом, такого делать нельзя, поскольку оно окажет нашей «железке» плохую услугу.

Золото ведь стоит очень далеко от железа в ряду активности (дальше всего), и при малейшей царапине железо вскоре превратится в груду ржавчины, покрытую золотой пленкой.

Автомобильный кузов подвергается воздействию как химической, так электрохимической коррозии. Но главная роль все же отводится электрохимическим процессам.

Ведь, чего греха таить, гальванических пар в автомобильном кузове воз и маленькая тележка: это и сварные швы, и контакты разнородных металлов, и посторонние включения в листовом прокате. Не хватает только электролита, чтобы «включить» эти гальванические элементы.

А электролит тоже найти легко — хотя бы влага, содержащаяся в атмосфере.

Кроме того, в реальных условиях эксплуатации оба вида коррозии усиливаются множеством других факторов. Поговорим о главных из них поподробнее.

Факторы, влияющие на коррозию автомобильного кузова

Металл: химический состав и структура

Конечно, если бы автомобильные кузова изготавливались из технически чистого железа, их коррозионная стойкость была бы безупречной. Но к сожалению, а может быть и к счастью, это невозможно. Во-первых, такое железо для автомобиля слишком дорого, во-вторых (что важнее) — недостаточно прочно.

Впрочем, не будем о высоких идеалах, а вернемся к тому, что имеем. Возьмем, к примеру, сталь марки 08КП, широко применяемую в России для штамповки кузовных элементов. При изучении под микроскопом эта сталь представляет собой следующее: мелкие зерна чистого железа перемешаны с зернами карбида железа и другими включениями.

Как вы уже догадались, подобная структура порождает множество микрогальванических элементов, и как только в системе появится электролит, коррозия потихоньку начнет свою разрушительную деятельность.

Интересно, что процесс коррозии железа ускоряется под действием серосодержащих примесей. Обычно она попадает в железо из каменного угля при доменной выплавке из руд. Кстати, в далеком прошлом для этой цели использовался не каменный, а древесный уголь, практически не содержащий серы.

В том числе и по этой причине некоторые металлические предметы древности за свою многовековую историю практически не пострадали от коррозии. Взгляните, к примеру, на эту железную колонну, которая находится во дворе минарета Кутуб-Минар в Дели.

Она стоит уже 1600 (!) лет, и хоть бы что. Наряду с низкой влажностью воздуха в Дели, одной из причин такой поразительной коррозионной стойкости индийского железа является, как раз-таки, низкое содержание в металле серы.

Так что в рассуждениях на манер «раньше металл был чище и кузов долго не ржавел», все-таки есть доля правды, и немалая.

Кстати, почему же тогда не ржавеют нержавеющие стали? А потому, что хром и никель, используемые в качестве легирующих компонентов этих сталей, стоят в электрохимическом ряду напряжений рядом с железом. Кроме того, при контакте с агрессивной средой они образуют на поверхности прочную оксидную пленку, предохраняющую сталь от дальнейшего корродирования.

Хромоникелевая сталь — наиболее типичная нержавейка, но кроме нее есть и другие марки нержавеющих сталей. Например, легкие нержавеющие сплавы могут включать алюминий или титан. Если вы были во Всероссийском выставочном центре, вы наверняка видели перед входом обелиск «Покорителям космоса». Он облицован пластинками из титанового сплава и на его блестящей поверхности нет ни единого пятнышка ржавчины.

Заводские кузовные технологии

Толщина листовой стали, из которой изготавливаются кузовные детали современного легкового автомобиля, составляет, как правило, менее 1 мм. А в некоторых местах кузова эта толщина — и того меньше.

Особенностью процесса штамповки кузовных панелей, да и вообще, любой пластической деформации металла, является возникновение в ходе деформации нежелательных остаточных напряжений. Эти напряжения незначительны, если шпамповочное оборудование не изношено, и скорости деформирования настроены правильно.

В противном случае в кузовную панель закладывается этакая «часовая бомба»: порядок расположения атомов в кристаллических зернах меняется, поэтому металл в состоянии механического напряжения корродирует интенсивнее, чем в нормальном состоянии. И, что характерно, разрушение металла происходит именно на деформированных участках (изгибах, отверстиях), играющих роль анода.

Кроме того, при сварке и сборке кузова на заводе в нем образуется множество щелей, нахлестов и полостей, в которых скапливается грязь и влага. Не говоря уже о сварных швах, образующих с основным металлом все те же гальванические пары.

Влияние окружающей среды при эксплуатации

Среда, в которой эксплуатируются металлические конструкции, в том числе и автомобили, с каждым годом становится все более агрессивной. В последние десятилетия в атмосфере повысилось содержание сернистого газа, оксидов азота и углерода. А значит, автомобили омываются уже не просто водичкой, а кислотными дождями.

Коль уж зашла речь о кислотных дождях, вернемся еще раз к электрохимическому ряду напряжений. Наблюдательный читатель подметил, что в него включен также и водород. Резонный вопрос: зачем? А вот зачем: его положение показывает, какие металлы вытесняют водород из растворов кислот, а какие — нет. Например, железо расположено левее водорода, а значит вытесняет его из растворов кислот, в то время как медь, стоящая правее, на подобный подвиг уже не способна.

Отсюда следует, что кислотные дожди для железа опасны, а для чистой меди — нет. А вот о бронзе и других сплавах на основе меди этого сказать нельзя: они содержат алюминий, олово и другие металлы, находящиеся в ряду левее водорода.

Замечено и доказано, что в условиях большого города кузова живут меньше. В этой связи показательны данные Шведского института коррозии (ШИК), установившего, что:

  • в сельской местности Швеции скорость разрушения стали составляет 8 мкм в год, цинка — 0,8 мкм в год;
  • для города эти цифры составляют 30 и 5 мкм в год соответственно.

Немаловажны и климатические условия, в которых эксплуатируется автомобиль. Так, в условиях морского климата коррозия активизируется примерно в два раза.

Влажность и температура

Насколько велико влияние влажности на коррозию мы можем понять на примере ранее упомянутой железной колонны в Дели (вспомним сухость воздуха, как одну из причин ее коррозионной стойкости).

Поговаривают, что один иностранец решил раскрыть тайну этого нержавеющего железа и каким-то образом отколол небольшой кусочек от колонны. Каково же было его удивление, когда еще на корабле по пути из Индии этот кусочек покрылся ржавчиной. Оказывается, на влажном морском воздухе нержавеющее индийское железо оказалось не таким уж и нержавеющим. Кроме того, аналогичную колонну из Конарака, расположенного поблизости моря, коррозия поразила очень сильно.

Скорость коррозии при относительной влажности до 65% сравнительно невелика, но когда влажность возрастает выше указанного значения — коррозия резко ускоряется, поскольку при такой влажности на металлической поверхности образуется слой влаги. И чем дольше поверхность остается влажной, тем быстрее распространяется коррозия.

Вот почему основные очаги коррозии всегда обнаруживаются в скрытых полостях кузова: cохнут-то они гораздо медленнее открытых частей. Как результат — в них образуются застойные зоны, — настоящий рай для коррозии.

Кстати, применение химических реагентов для борьбы с гололедом коррозии тоже на руку. Вперемешку с подтаявшими снегом и льдом антигололедные соли образуют очень сильный электролит, способный проникнуть куда угодно, в том числе и в скрытые полости.

Что касается температуры, то мы уже знаем, что ее повышение активизирует коррозию. По этой причине вблизи выхлопной системы следов коррозии всегда будет больше.

Доступ воздуха

Интересная все-таки вещь эта коррозия. Насколько интересна, настолько же и коварна. К примеру, не удивляйтесь, что блестящий стальной трос, с виду абсолютно не тронутый коррозией, внутри может оказаться проржавевшим. Так происходит из-за неравномерного доступа воздуха: в тех местах, где он затруднен, угроза коррозии больше. В теории коррозии это явление называется дифференциальной аэрацией.

Принцип дифференциальной аэрации: неравномерный доступ воздуха к разным участкам металлической поверхности приводит к образованию гальванического элемента. При этом участок, интенсивно снабжаемый кислородом, остается невредимым, а участок хуже снабжаемый им, корродирует.

Яркий пример: капля воды, попавшая на поверхность металла. Участок, находящийся под каплей и потому хуже снабжаемый кислородом, играет роль анода. Металл на этом участке окисляется, а роль катода выполняют края капли, более доступные влиянию кислорода. В результате на краях капли начинает осаждаться гидроксид железа — продукт взаимодействия железа, кислорода и влаги.

Кстати, гидроксид железа (Fe 2 O 3 ·nH 2 O) и является тем, что мы называем ржавчиной. Поверхность ржавчины, в отличие от патины на медной поверхности или оксидной пленки алюминия, не защищает железо от дальнейшего корродирования. Изначально ржавчина имеет структуру геля, но затем постепенно происходит ее кристаллизация.

Кристаллизация начинается внутри слоя ржавчины, при этом внешняя оболочка геля, который в сухом состоянии очень рыхлый и хрупкий, отслаивается, и воздействию подвергается следующий слой железа. И так до тех пор, пока все железо не будет уничтожено или в системе не закончится весь кислород с водой.

Возвращаясь к принципу дифференциальной аэрации, можно представить, сколько существует возможностей для развития коррозии в скрытых, плохо проветриваемых участках кузова.

Ржавеют… все!

Как говорится, статистика знает все. Ранее мы упоминали о таком известном центре борьбы с коррозией, как Шведский институт коррозии (ШИК) — одной из наиболее авторитетных организаций в данной области.

Раз в несколько лет ученые института проводят интересное исследование: берут кузова хорошо потрудившихся автомобилей, вырезают из них наиболее полюбившиеся коррозии «фрагменты» (участки порогов, колесных арок, кромок дверей и т.д.) и оценивают степень их коррозионного поражения.

Важно отметить, что среди исследуемых кузовов есть как защищенные (оцинковкой и/или антикором), так и кузова без какой либо дополнительной антикоррозионной защиты (просто окрашенные детали).

Так вот, ШИК утверждает, что наилучшей защитой автомобильного кузова является лишь сочетание «цинк плюс антикор». А вот все остальные варианты, включая «просто оцинковку» или «просто антикор», по словам ученых — плохи.

Оцинковка — не панацея

Сторонники отказа от дополнительной антикоррозионной обработки часто ссылаются на заводскую оцинковку: с ней, мол, никакая коррозия автомобилю не грозит. Но, как показали шведские ученые, это не совсем так.

Действительно, цинк может служить в качестве самостоятельной защиты, но только на ровных и плавных поверхностях, к тому же не подверженных механическим атакам. А на кромках, краях, стыках, а также местах, регулярно подвергающихся «обстрелу» песком и камнями, оцинковка перед коррозией пасует.

К тому же, далеко не у всех автомобилей кузова оцинкованы полностью. Чаще всего цинком покрыто лишь несколько панелей.

Ну и не нужно забывать, что цинк хоть и защищает сталь, но в процессе защиты неизбежно расходуется сам. Поэтому толщина цинкового «щита» со временем будет постепенно снижаться.

Так что легенды о долгожительстве оцинкованных кузовов правдивы лишь в тех случаях, когда цинк становится частью общего барьера, дополнением к регулярной дополнительной антикоррозионной обработке кузова.

Пора заканчивать, но на этом тема коррозии далеко не исчерпана. О борьбе с ней мы продолжим говорить в следующих статьях рубрики «Антикоррозионная защита».

Коррозия металла является широко распространенной причиной, приводящей в негодность различные детали из металла. Коррозией металла (или ржавлением) называют разрушение металла под воздействием физических и химических факторов. К факторам, вызывающим коррозию, относят природные осадки, воду, температуру, воздух, различные щелочи и кислоты и т.д.

1

Коррозия металла становится серьезной проблемой при строительстве, в быту и на производствах. Чаще всего конструкторы предусматривают защиту металлических поверхностей от ржавчины, но иногда ржавление происходит на незащищенных поверхностях и на специально обработанных деталях.

Металлические сплавы лежат в основе жизнедеятельности человека, они окружают его практически везде: в быту, на работе, в процессе отдыха. Не всегда люди замечают металлические вещи и детали, но они постоянно им сопутствуют. Различные сплавы и чистые металлы являются самыми производимыми веществами на нашей планете. Современная промышленность выпускает различные сплавы в 20 раз больше (по массе), чем все остальные материалы. Несмотря на то что металлы считаются одними из наиболее прочных веществ на Земле, они могут разрушаться и терять свои характеристики в результате процессов ржавления. Под воздействием воды, воздуха и других факторов происходит процесс окисления металлов, который и называют коррозией. Несмотря на то что корродировать может не только металл, но и каменные породы, ниже будут рассмотрены процессы, связанные именно с металлами. Здесь стоит обратить внимание на то, что некоторые сплавы или металлы больше подвержены коррозии, чем другие. Это обусловлено скоростью протекания процесса окисления.

Процесс окисления металлов

Самое распространенное вещество в сплавах - это железо. Коррозия железа описывается следующим химическим уравнением: 3O 2 +2H 2 O+4Fe=2Fe 2 O 3 . H 2 O. Полученный в результате оксид железа и является той рыжей ржавчиной, портящей предметы. Но рассмотрим виды коррозии:

  1. Водородная коррозия. На металлических поверхностях практически не встречается (хотя теоретически возможна). В связи с этим описываться не будет.
  2. Кислородная коррозия. Аналогична водородной.
  3. Химическая. Реакция происходит из-за воздействия металла с каким-либо фактором (например, воздухом 3O 2 +4Fe=2Fe 2 O 3) и протекает без образования электрохимических процессов. Так, после воздействия кислорода с поверхностью появляется оксидная пленка. На некоторых металлах такая пленка достаточно прочна и не только защищает элемент от разрушительных процессов, но и повышает его прочность (например, алюминий или цинк). На некоторых металлах такая пленка очень быстро отслаивается (разрушается), например, у натрия или калия. А большинство металлов разрушаются достаточно медленно (железо, чугун и т.д.). Так, например, происходит коррозия чугуна. Более часто ржавление происходит при контакте сплава с серой, кислородом, хлором. Из-за химической коррозии ржавеют сопла, арматура и т.д.
  4. Электрохимическая коррозия железа. Данный вид ржавления происходит в средах, которые проводят электричество (проводники). Время разрушения различных материалов при электрохимических реакциях разное. Электрохимические реакции наблюдаются в случаях контакта металлов, которые находятся на расстоянии в ряду напряженности. Например, изделие изготовленное из стали, имеет медные напайки/крепления. При попадании воды на соединения медные части будут катодами, а сталь - анодом (каждая точка имеет свой электрический потенциал). Скорость протекания таких процессов зависит от количества и состава электролита. Для протекания реакций нужно наличие 2 разных металлов и электропроводящей среды. При этом разрушение сплавов прямо пропорционально зависит от силы тока. Чем больше ток, тем быстрее реакция, чем быстрее реакция, тем быстрее разрушение. В некоторых случаях катодами служат примеси сплава.

Электрохимическая коррозия железа

Также стоит отметить подвиды, которые бывают при ржавлении (описывать не будем, только перечислим): подземная, атмосферная, газовая, при разных видах погружения, сплошная, контактная, вызываемая трением и т.д. Все подвиды можно отнести к химическому или электрохимическому ржавлению.

2

При строительстве часто встречается коррозия арматуры и сварных конструкций. Коррозия часто происходит из-за несоблюдения правил хранения материала или невыполнения работ по обработке прутьев. Коррозия арматуры довольно опасна, поскольку арматуру закладывают для усиления конструкций, и в результате разрушения прутьев возможен обвал. Коррозия сварных швов не менее опасно, чем коррозия арматуры. Это также значительно ослабит шов и может привести к разрыву. Есть достаточно много примеров, когда ржавчина на силовых конструкциях приводит к обрушению помещений.

Другие часто встречающиеся в быту случаи ржавления - порча бытовых орудий труда (ножей, столовых приборов, инструмента), порча металлоконструкций, порча средств передвижения (как наземных, так и воздушных и водных) и т.д.

Пожалуй, самые часто встречающиеся ржавые вещи - это ключи, ножи и инструменты. Все эти предметы подвергаются ржавлению из-за того, что трением снимается защитное покрытие, которое оголяет основу.

Основа подвергается процессам разрушения из-за контактов с агрессивными средами (особенно ножи и инструменты).

Разрушения из-за контактов с агрессивными средами

Кстати, разрушения вещей, которые часто используются в быту, можно наблюдать практически повсеместно и регулярно, в то же время некоторые металлические предметы или конструкции могут простоять ржавыми десятилетия и будут исправно выполнять свои функции. Например, ножовка, которой часто пилили бревна и оставили на месяц в сарае, быстро проржавеет и может сломаться в процессе работы, а столб с дорожным знаком может простоять десять, а то и более лет ржавым и не разрушится.

Поэтому все металлические вещи следует защищать от коррозии. Методов защиты несколько, но все это химия. Выбор такой защиты зависит от типа поверхности и действующего на нее разрушительного фактора.

Для этого поверхность тщательно очищают от грязи и пыли, для того чтобы исключить возможность непопадания защитного покрытия на поверхность. Затем ее обезжиривают (для некоторых типов сплава или металла и для некоторых защитных покрытий это является необходимым), после чего наносят защитный слой. Наиболее часто защиту обеспечивают лакокрасочные материалы. В зависимости от металла и факторов используются разные лаки, краски и грунты.

Другой вариант - нанесение тонкого защитного слоя из другого материала. Обычно этот способ практикуется на производстве (например, оцинковка). В итоге потребителю практически ничего не требуется делать после приобретения вещи.

Нанесение тонкого защитного слоя

Другой вариант - создание специальных сплавов, которые не окисляются (например, нержавейка), однако они не гарантируют 100% защиты, более того, некоторые вещи из таких материалов окисляются.

Важными параметрами защитных слоев являются толщина, срок службы и скорость разрушения под активным неблагоприятным воздействием. При нанесении защитного покрытия крайне важно точно вписаться в допустимую толщину слоя. Обычно производители лакокрасочных материалов указывают его на упаковке. Так, если слой будет больше максимально допустимого, то это вызовет перерасход лака (краски), и слой может разрушаться под сильным механическим воздействием, более тонкий слой может стираться и сократить срок защиты основы.

Правильно выбранный защитный материал и правильно нанесенный на поверхность гарантирует на 80% то, что деталь не будет подвержена коррозии.

3

Многие люди в быту не задумываются над тем, как защитить свои вещи ото ржи. И получают проблему в виде испорченного предмета. Как правильно решить эту проблему?

Удаление ржавчины с детали

Для того чтобы произвести восстановление вещи или детали от ржавчины, первым делом следует снять весь рыжий налет до чистой поверхности. Он снимается с помощью наждачной бумаги, напильников, сильными реагентами (кислотами или щелочами), но особую славу в этом заслужили напитки типа «Кока-Колы». Для этого вещь погружают полностью в емкость с чудо-жидкостью и оставляют на некоторое время (от нескольких часов до нескольких суток - время зависит от вещи и поврежденной площади).

Рыжие пятна на стальных изделиях

Согласно данным ООН, каждая страна в год теряет от 0,5 до 7-8% валового национального продукта из-за коррозии. Парадокс заключается в том, что менее развитые страны теряют меньше, чем развитые. А 30% всех выпускаемых стальных изделий на планете идет на замену проржавевшим. Поэтому настоятельно рекомендуется отнестись к этой проблеме серьезно.

Коррозия металлов может проявляться в различных формах, основными из которых являются:

1. Общая коррозия, известная также как равномерная. Общая коррозия является наиболее распространенным типом разрушения металлов и вызвана химическими или электрохимическими реакциями. Общая коррозия приводит к ухудшению всей поверхности металла, но считается одной из самых безопасных форм коррозии, так как является предсказуемой и управляемой.

2. Местная (локализированная) коррозия. В отличие от общей коррозии, этот вид коррозии ориентирован на одну область металлической конструкции.

Локализованная коррозия классифицируется на три типа:

2.1 Питтинговая: коррозия в виде небольшого отверстия или полости в металле. Возникает, как правило, в результате депассивации небольшой области поверхности. Пораженная область становится анодом, а часть оставшегося металла - катодом, в результате происходят локализованные гальванические реакции. Эту форму коррозии часто бывает трудно обнаружить из-за того, что пораженный участок обычно относительно мал и может быть скрыт под поверхностью.

2.2 Щелевая: подобно питтинговой, щелевая коррозия локализируется в определенном месте. Этот тип коррозии часто ассоциируется с застойной микро-зоной агрессивной среды, например, под прокладками, шайбами и зажимами. Кислотность среды, или отсутствие кислорода в узких щелях может привести к этому типу коррозии.

2.3 Нитевидная коррозия: появляется под окрашенными или металлизированными поверхностями, когда вода или влажная среда нарушает покрытие. Нитевидная коррозия начинается с небольших дефектов в покрытии и распространяется вширь, вызывая структурные разрушения.

3. Электрохимическая коррозия начинается тогда, когда два различных металла находятся вместе в коррозионной электролитной среде. Между двумя металлами образуется гальваническая пара, один из металлов — анод, а другой — катод. При этом ионы металла переходят из анодированного материала к катодному металлу.


При наличии электрохимического эффекта анодный участок разрушается гораздо сильнее, чем катодный. Без наличия потока заряженных частиц оба металла корродируют одинаково. Для существования гальванической коррозии необходимо наличие трех условий: электрохимически разнородные металлы, непосредственный контакт этих металлов, воздействие электролита.

4. Разрушение металла от влияния окружающей среды может быть результатом сочетания условий среды, воздействующих на материал, либо от одного из факторов. Химическое воздействие, температура и условия, связанные с механическим напряжением (особенно с растягивающими усилиями), могут привести к следующим видам коррозии: коррозионное усталостное растрескивание, коррозионное растрескивание под нагрузкой, водородное растрескивание, жидкометаллическое охрупчивание при контакте с жидким металлом.

5. Эрозионно-коррозионный износ возникает при воздействии агрессивного частиц и потока среды, кавитации, в результате чего постоянно удаляется защитный оксидный слой на поверхности металла, а основной металл корродирует.

6. Межкристаллитная коррозия представляет собой химическое или электрохимическое разрушение на границах зерен металла. Это явление часто происходит из-за примесей в металле, которые обычно концентрируются на границах зерен.

7. Селективное выщелачивание (или разрушение сплава) представляет собой коррозию одного из элементов в сплаве. Наиболее распространенным типом является выщелачивание цинка из латуни. В результате коррозии получается пористая медь.

8. Фрикционная коррозия происходит в результате износа и / или вибрации на неровной, шероховатой поверхности. В результате на поверхности возникают углубления и канавки. Фрикционная коррозия часто встречается при вращении деталей машин, в болтовых узлах и подшипниках, а также на поверхностях, подвергающихся вибрации во время транспортировки.

9. Высокотемпературная коррозия чаще всего появляется в газовых турбинах, дизельных двигателях и других машинах, содержащих ванадий или сульфаты, которые могут при горении образовывать соединения с низкой температурой плавления. Эти соединения являются очень коррозионно-агрессивными по отношению к металлическим сплавам, в том числе для нержавеющих сталей.

Высокотемпературная коррозия также может возникнуть при высокой температуре в результате окисления, сульфидирования и карбонизации металла.

К.т.н. В.Б. Косачев, А.П. Гулидов, НПК «Вектор», г. Москва

В статье приведены сведения о коррозии металлов, которые могут быть полезны для широкого круга инженерно-технических работников, связанных по роду деятельности с осуществлением практических мер по защите от коррозии оборудования теплоснабжающих организаций.

Коррозия и ее социальное значение

Любой коррозионный процесс приводит к изменениям в свойствах конструкционных материалов. Результатом процесса является «коррозионный эффект», ухудшающий функциональные характеристики металла оборудования, среды и технических систем, расценивающийся как «эффект повреждения» или «коррозионная порча».

Очевидно, что экономические потери, связанные с коррозией металлов, определяются не столько стоимостью прокорродировавшего металла, сколько стоимостью ремонтных работ, убытками за счет временного прекращения функционирования инженерных систем, затратами на предотвращение аварий, в некоторых случаях абсолютно недопустимых с точки зрения экологической безопасности. Оценки затрат, связанных с коррозией (по данным зарубежных источников) приводят к выводу, что общие годовые расходы на борьбу с последствиями коррозии составляют 1,5-2% валового национального продукта. Часть этих затрат неизбежна; было бы нереально полностью исключить все коррозионные разрушения. Тем не менее, можно значительно сократить коррозионные потери за счет лучшего использования на практике накопленных знаний о коррозионных процессах и методов защиты от коррозии, которыми антикоррозионные службы располагают на данный момент.

Процессы коррозии

Понятие «коррозия металлов» включает большую группу химических процессов, приводящих к разрушению металла. Эти процессы резко отличаются друг от друга по внешним проявлениям, по условиям и средам в которых они протекают, а также по свойствам реагирующих металлов и образующихся продуктов реакции. Однако для их объединения имеются все основания, т.к. несмотря на резкие отличия, все эти процессы имеют не только общий результат – разрушение металла, но и единую химическую сущность – окисление металла.

Причина коррозии – термодинамическая неустойчивость металлов, вследствие чего большинство из них встречаются в природе в окисленном состоянии (оксиды, сульфиды, силикаты, алюминаты, сульфаты и т.д.). Таким образом, коррозию можно определить как самопроизвольный процесс, протекающий при взаимодействии металла с окружающей средой, сопровождающийся уменьшением свободной энергии Гиббса и разрушением металла. Коррозия протекает на границе раздела двух фаз «металл – окружающая среда», т. е. является гетерогенным многостадийным процессом и состоит как минимум из трех основных многократно повторяющихся стадий:

1 подвода реагирующих веществ (в том числе коррозионного агента) к поверхности раздела фаз;

2 собственно реакции взаимодействия металла с коррозионной средой, итогом которой является переход некоторого количества металла в окисленную форму с образованием продуктов коррозии, а коррозионного агента в восстановленную форму;

3 отвод продуктов коррозии из реакционной зоны.

Механизмы процессов коррозии

По механизму протекания процесса окисления металла различают химическую и электрохимическую коррозию.

Химическая коррозия . К этому виду коррозии относятся такие процессы окисления металла и восстановления коррозионного агента, при которых передача электронов металла осуществляется непосредственно атомам или ионам окислителя (коррозионного агента), которым наиболее часто является кислород воздуха.

2Ме + О 2 -->2МеО (1)

В практике теплоснабжения наиболее распространенным и практически важным видом химической коррозии является газовая коррозия – коррозия металлов в сухих газах (воздух, продукты сгорания топлива) при высоких температурах. Основными факторами, влияющими на скорость газовой коррозии, являются:

3 природа металла (сплава);

4 состав газовой среды;

5 механические свойства образующихся продуктов коррозии (оксидных пленок);

6 температура.

Так, для железа, основного компонента углеродистых сталей, применяемых для изготовления экранов топочного пространства и конвективной части водогрейных котлов, зависимость скорости газовой коррозии от температуры близко к экспоненциальной, рис. 1. Температура оказывает влияние на состав образующихся на стали оксидных пленок и законы их роста, табл. 1. От состава оксидных пленок зависят их механические и, соответственно, защитные свойства, поскольку плотная сплошная оксидная пленка может защитить металл от дальнейшего окисления. Парциальное давление кислорода также оказывает влияние на скорость газовой коррозии. При окислении ряда металлов при постоянной и достаточно высокой температуре с повышением парциального давления кислорода (Ро 2) скорость окисления сначала резко увеличивается, а затем, при достижении некоторого критического значения (Р о 2) – резко уменьшается и в широком диапазоне давлений остается достаточно низкой, рисунок 2. Большое влияние на скорость окисления металлов оказывает режим нагрева. Колебания температуры (переменный нагрев и охлаждение) даже в небольших интервалах вызывают разрушение оксидных пленок вследствие возникновения больших внутренних напряжений, в результате чего скорость окисления металла резко увеличивается.

Для защиты от газовой коррозии применяют жаростойкое легирование сталей, создают защитные (восстановительные) атмосферы, используют термодиффузионные (на основе алюминия, кремния и хрома) и напыляемые (на основе оксидов алюминия, магния, циркония) защитные покрытия.

Электрохимическая коррозия. Этот вид коррозии наиболее распространен и включает те случаи, когда процессы окисления металла и восстановления окислительного компонента протекают раздельно в среде жидкого электролита, т.е. в среде, проводящей электрический ток. Такими средами могут являться: природная вода, водные растворы солей, кислот, щелочей, а также воздух, почва и теплоизоляционные конструкции, содержащие электролит (влагу) в определенном количестве. Таким образом, процесс электрохимической коррозии представляет собой совокупность двух сопряженно протекающих реакций:

анодной (окисление) Ме → Ме z+ + ze - (2),

и катодной (восстановление) D + ze - → (Dze -) (3),

где D – деполяризатор (окислитель), присоединяющий к себе электроны металла. В качестве деполяризатора могут выступать: кислород, растворенный в электролите, ионы водорода (Н +) и некоторых металлов. Общая схема электрохимического коррозионного процесса металла приведена на рисунке 3, а частный случай ржавления железа описывается реакцией:

2Fe + 2H 2 O + O 2 → 2Fe 2+ + 4 OH - (4).

Возникновение гальванических элементов «катод – анод» на углеродистых сталях (основного конструкционного материала трубопроводов) при их контакте с электролитами происходит в основном из-за дифференциации поверхности сталей на участки с различными электродными потенциалами (теория локальных коррозионных элементов). Причины дифференциации могут быть различны:

7 неоднородность структуры металла (в углеродистых сталях присутствуют фазы – феррит и цементит, структурные составляющие – перлит, цементит и феррит, имеющие различные электродные потенциалы);

8 наличие на поверхности сталей оксидных пленок, загрязнений, неметаллических включений и т.п;

9 неравномерное распределение окислителя на границе «металл-электролит», например, различные влажность и аэрация на различных участках поверхности металла;

10 неравномерность распределения температуры;

11 контакт разнородных металлов.

Сводные данные по Н.Д. Томашову о гальванических коррозионных парах (табл. 2), образование которых возможно на действующих трубопроводах тепловых сетей в присутствии влаги или ее следов, позволяют утверждать, что все случаи ржавления трубопроводов и металлоконструкций тепловых сетей происходят в результате электрохимической коррозии.

Основные виды электрохимической коррозии

и характер коррозионных повреждений металла

В зависимости от условий протекания процесса электрохимической коррозии (вида коррозионной среды) различают атмосферную, почвенную, микробиологическую и жидкостную (кислотную, щелочную, солевую, морскую и пресноводную) коррозию. В зависимости от условий эксплуатации любой из вышеприведенных видов коррозии может протекать при наложении таких эксплуатационных факторов как трение, кавитация, напряжения в металле, воздействие внешних источников постоянного и переменного тока.

В таблице 3 представлены возможные виды электрохимической коррозии трубопроводов и емкостного оборудования теплоснабжающих предприятий, а также неблагоприятные эксплуатационные факторы, способствующие возрастанию скорости коррозионных процессов. На рисунках 5-9 приведены наиболее характерные коррозионные повреждения конструкционных углеродистых сталей, вызываемые различными видами электрохимической коррозии.

Методы защиты от электрохимической коррозии

Защита от электрохимической коррозии представляет комплекс мероприятий, направленных на предотвращение и ингибирование коррозионных процессов, сохранение и поддержание работоспособности оборудования и сооружений в требуемый период эксплуатации.

Методы защиты металлоконструкций от коррозии основаны на целенаправленном воздействии, приводящем к полному или частичному снижению активности факторов, способствующих развитию коррозионных процессов. Методы защиты от коррозии можно условно разделить на методы воздействия на металл и методы воздействия на среду, а также комбинированные методы. Классификация методов представлена на рисунке 10.

Среди методов воздействия на металл, в практике защиты оборудования и трубопроводов теплоснабжающих организаций наибольшее распространение получили защитные и изолирующие покрытия постоянного действия (полимерные, стеклоэмалевые, металлические цинковые и алюминиевые). Воздействие на коррозионную среду (вода) применяется при защите от внутренней коррозии емкостного оборудования и трубопроводов путем ее ингибирования и деаэрации.

В значительной степени снизить скорость коррозионных процессов на трубопроводах можно, применяя электрохимическую защиту. При данном виде защиты электрохимический потенциал трубопровода смещают в необходимую (защитную) область потенциалов (поляризация конструкции) путем его подключения к внешнему источнику тока – станции катодной защиты или протектору.

Следует отметить, что вариант защиты для конкретного объекта должен выбираться исходя из анализа условий его эксплуатации. При этом должны учитываться требования к показателям, характеризующим необходимое качество работы объекта, технологические особенности применения выбранного метода (методов) защиты и достигаемый при этом экономический эффект.

Усложнение условий эксплуатации оборудования и, в первую очередь, теплопроводов, появление специфических загрязнений воздуха и воды требует постоянного совершенствования методов защиты от коррозии. Основываясь на анализе обобщенной информации о коррозионных повреждениях различного оборудования теплоснабжающих предприятий, можно заключить, что основными направлениями при совершенствовании методов защиты от коррозии в теплоснабжении являются: внедрение антикоррозионных и гидроизоляционных покрытий для наружных поверхностей трубопроводов с улучшенными потребительскими свойствами; применение для горячего водоснабжения труб со стеклоэмалевыми и полимерными внутренними покрытиями; применение комбинированных вариантов защиты с совместным использованием установок электрохимической защиты и защитных покрытий.

Таблица 1



Таблица 3.

№ п\п Вид электрохимической коррозии Способ прокладки трубопровода

(вид оборудования)

Дополнительные коррозионные факторы
1. Атмосферная коррозия Наружные поверхности трубопроводов наземной и канальной прокладки (при уровне подтопления и заиливания канала, не достигающим изоляционных конструкций). Поверхности различных металлоконструкций и оборудования, не контактирующие с водой и грунтом. Внутренние напряжения в металле трубопровода и металлоконструкций, ударно-механическое воздействие капели с перекрытий.

Характерные коррозионные повреждения: равномерная коррозия, в местах капели возможна коррозия пятнами.

2. Подземная

коррозия

Наружные поверхности трубопроводов бесканальной прокладки (при нарушении целостности изоляции), канальной прокладки (периодическое подтопление и заиливание канала, сопровождающееся увлажнением тепловой изоляции). Внутренние напряжения в металле, коррозия внешним постоянным и переменным током, воздействие капели.

Характерные коррозионные повреждения: неравномерная коррозия, коррозия пятнами, при воздействии блуждающих токов возможны сквозные поражения стенки трубопровода.

3. Подводная коррозия Наружные поверхности трубопроводов канальной прокладки. (Постоянное подтопление канала при отсутствии тепловой изоляции на трубопроводе).

Внутренние поверхности трубопроводов и оборудования химводоподготовки (деаэраторы, фильтры и т.п.)

Внутренние напряжения в металле, коррозия внешним постоянным и переменным током. При неполном погружении трубопровода возможна коррозия по ватерлинии.

Характерные коррозионные повреждения: неравномерная коррозия, при воздействии блуждающих токов возможны сквозные поражения стенки трубопровода, язвенные поражения в районе ватерлинии.

На трубопроводах горячего водоснабжения возможно протекание процесса микробиологической коррозии железобактериями.

Характерные коррозионные повреждения: язвенная коррозия (для внутренних поверхностей трубопроводов), точечная коррозия, неравномерная коррозия.




Коррозия - это разрушение металлических, керамических, деревянных и других материалов в результате химического или физико-химического взаимодействия. Что же касается причин возникновения такого нежелательного эффекта, то они разные. В большинстве случаев это конструкционная неустойчивость к термодинамическим воздействиям окружающей среды. Давайте подробно разберемся с тем, что такое коррозия. Виды коррозии тоже обязательно нужно рассмотреть, да и о защите от нее поговорить не будет лишним.

Немного общих сведений

Мы привыкли слышать термин «ржавление», который применяется в случае коррозии металла и сплавов. Есть еще такое понятие, как «старение», - оно свойственно полимерам. По сути, это одно и то же. Яркий пример - старение резиновых изделий из-за активного взаимодействия с кислородом. Помимо этого, некоторые пластиковые элементы разрушаются под воздействием Скорость протекания коррозии напрямую зависит от условий, в которых находится объект. Так, ржавчина на металлическом изделии будет распространяться тем быстрее, чем выше температура. Также влияет и влажность: чем она выше, тем быстрее непригодным для дальнейшей эксплуатации. Опытным путем установлено, что примерно 10 процентов металлических изделий безвозвратно списываются, и виной всему - коррозия. Виды коррозии бывают различными и классифицируются в зависимости от типа сред, характера протекания и тому подобного. Давайте рассмотрим их более подробно.

Классификация

В настоящее время существует более двух десятков вариантов ржавления. Мы приведем только самые основные виды коррозии. Условно их можно поделить на следующие группы:

  • Химическая коррозия - процесс взаимодействия с коррозионной средой, при котором и восстановление окислителя проходят в одном акте. Металл и окислитель не разделены пространственно.
  • Электрохимическая коррозия - процесс взаимодействия металла с Ионизация атомов и восстановление окислителя проходят в разных актах, однако скорость во многом зависит от электродного потенциала.
  • Газовая коррозия - химическое ржавление металла при минимальном содержании влаги (не более 0,1 процента) и/или высоких температурах в газовой среде. Чаще всего данный вид встречается в химической и нефтеперерабатывающей промышленности.

Помимо этого, существует еще огромное количество процессов ржавления. Все они и есть коррозия. Виды коррозии, кроме вышеописанных, включают биологическое, радиоактивное, атмосферное, контактное, местное, целевое ржавление и др.

Электрохимическая коррозия и ее особенности

При таком виде разрушения процесс протекает при соприкосновении металла с электролитом. В качестве последнего может выступать конденсат или дождевая вода. Чем больше в жидкости содержится солей и кислот, тем выше электропроводность, а следовательно, и скорость протекания процесса. Что же касается наиболее подверженных коррозии мест металлической конструкции, то это заклепки, сварные соединения, места механических повреждений. В случае если конструкционные свойства сплава железа делают его устойчивым к ржавлению, процесс несколько замедляется, однако все равно продолжается. Ярким примером является оцинковка. Дело в том, что цинк имеет более отрицательный потенциал, нежели железо. По этой простой причине сплав железа восстанавливается, а цинк коррозирует. Однако наличие на поверхности оксидной пленки сильно замедляет процесс разрушения. Безусловно, все виды электрохимической коррозии являются крайне опасными и иногда с ними даже невозможно бороться.

Химическая коррозия

Такое изменение металла встречается довольно часто. Ярким примером является появление окалины в результате взаимодействия металлических изделий с кислородом. Высокая температура в этом случае выступает ускорителем процесса, а участвовать в нем могут такие жидкости, как вода, соли, кислоты, щелочи и растворы солей. Если говорить о таких материалах, как медь или цинк, то их окисление приводит к возникновению устойчивой к дальнейшей коррозии пленки. Стальные же изделия образуют окиси железа. Дальнейшие приводят к возникновению ржавчины, которая не обеспечивает никакой защиты от дальнейшего разрушения, а наоборот, способствует этому. В настоящее время все виды химической коррозии устраняются при помощи оцинковки. Могут применяться и другие средства защиты.

Виды коррозии бетона

Изменение структуры и увеличение хрупкости бетона под воздействием окружающей среды может быть трех видов:

  • Разрушение частей цементного камня - один из самых распространенных видов коррозии. Он имеет место в том случае, если изделие из бетона подвергается систематическому воздействию атмосферных осадков и других жидкостей. В результате вымывается гидрат окиси кальция и нарушается структура.
  • Взаимодействие с кислотами. Если цементный камень будет контактировать с кислотами, то образуется бикарбонат кальция - агрессивный химический элемент для бетонного изделия.
  • Кристаллизация труднорастворимых веществ. По сути, имеется в виду биокоррозия. Суть заключается в том, что микроорганизмы (споры, грибки) попадают в поры и там развиваются, вследствие чего происходит разрушение.

Коррозия: виды, способы защиты

Миллиардные ежегодные убытки привели к тому, что люди стали бороться с этим вредным воздействием. Можно с уверенностью говорить о том, что все виды коррозии приводят к потере не самого металла, а ценных металлоконструкций, на строительство которых тратятся огромные деньги. Сложно сказать, возможно ли обеспечить 100-процентную защиту. Тем не менее, при правильной подготовке поверхности, которая заключается в абразивоструйной очистке, можно добиться хороших результатов. От электрохимической коррозии надежно защищает лакокрасочное покрытие при правильном его нанесении. А от разрушения металла под землей надежно защитит специальная обработка поверхности.

Активные и пассивные методы борьбы

Суть активных методов заключается в том, чтобы изменить структуру двойного электрического поля. Для этого используют источник постоянного тока. Напряжение нужно выбирать таким образом, чтобы повышался изделия, которое нужно защитить. Еще один крайне популярный метод - «жертвенный» анод. Он разрушается, защищая основной материал.

Пассивная защита подразумевает использование лакокрасочного покрытия. Основная задача заключается в том, чтобы полностью предотвратить попадание влаги, а также кислорода на защищаемую поверхность. Как уже было отмечено несколько выше, имеет смысл использовать цинковое, медное или никелевое напыление. Даже частично разрушенный слой будет защищать металл от ржавления. Конечно, данные виды защиты от коррозии металлов действенны только тогда, когда поверхность не будет иметь видимых дефектов в виде трещин, сколов и тому подобного.

Оцинкование в подробностях

Мы уже с вами рассмотрели основные виды коррозии, а сейчас хотелось бы поговорить о лучших методах защиты. Одним из таких является оцинкование. Суть его заключается в том, что на обрабатываемую поверхность наносится цинк или его сплав, что придает поверхности некоторые физико-химические свойства. Стоит отметить, что данный метод считается одним из самых экономичных и эффективных, и это при том, что на металлизацию цинком расходуется примерно 40 процентов от мировой добычи этого элемента. Оцинкованию могут подвергаться стальные листы, крепежные детали, а также приборы и другие металлоконструкции. Интересно то, что с помощью металлизации или распыления можно защитить изделие любого размера и формы. Декоративного назначения цинк не имеет, хотя с помощью некоторых специальных добавок появляется возможность получения блестящих поверхностей. В принципе, этот металл способен обеспечить максимальную защиту в агрессивных средах.

Заключение

Вот мы и рассказали вам о том, что такое коррозия. Виды коррозии тоже были рассмотрены. Теперь вы знаете, как защитить поверхность от преждевременного ржавления. По большому счету, сделать это предельно просто, но немалое значение имеет то, где и как эксплуатируется изделие. Если оно постоянно подвергается динамическим и вибрационным нагрузкам, то велика вероятность возникновения трещин в лакокрасочных покрытиях, через которые влага будет попадать на металл, в результате чего он будет постепенно разрушаться. Тем не менее, использование различных резиновых прокладок и герметиков в местах взаимодействия металлических изделий может несколько продлить срок службы покрытия.

Ну, вот и все по данной теме. Помните о том, что преждевременное разрушение конструкции из-за воздействия коррозии может привести к непредвиденным последствиям. На предприятии большой материальный ущерб и человеческие жертвы возможны в результате ржавления несущей металлоконструкции.