Факторы размещения тэс. Типы электростанций и особенность их размещения по регионам рф

Факторы размещения тэс. Типы электростанций и особенность их размещения по регионам рф
Факторы размещения тэс. Типы электростанций и особенность их размещения по регионам рф

Цели: сформировать у учащихся представление об электроэнергетике России как об авангардной отрасли народного хозяйства страны.

Задачи:

  • Обучающая: углубить знания учащихся по топливно-энергетическому комплексу России;разъяснить понятия «электроэнергетика» и «энергосистема»; дать представление о роли и значении электроэнергетики для промышленности и населения страны;
  • Развивающая: развивать у учащихся умения и навыки работы с картой и текстом; способствовать развитию аналитического и логического мышления;
  • Воспитательная: воспитывать интерес к географии родной страны, её экономике и экологии.

Тип урока: комбинированный

Средства обучения: физическая карта России, карта «электроэнергетика России», атласы учащихся, интерактивная доска, фотографии различных электростанций, таблицы, схемы.

Терминологический аппарат: электростанция, ТЭС, ГЭС, АЭС, альтернативные источники энергии, энергосистема

Ход урока

1. Организационный момент (1 мин)

2. Опрос домашнего задания (8 мин)

Тест

1. Самые крупные запасы угля (общегеологические) сосредоточены в

А) Кузнецком бассейне
Б) Печорском бассейне
В) Тунгусском бассейне
Г) Донецком бассейне

2. Первое место в России по запасам угля занимает бассейн

А) Кузнецкий Б) Печорский В) Южно-Якутский

3. Самый дешёвый уголь (в 2-3 раза дешевле кузнецкого) в бассейне

А) Печорском Б) Донецком В) Канско-Ачинском

4. Крупнейшая нефтегазовая база России – это

А) Западная Сибирь Б) Поволжье В) Баренцево море

5. На территории России насчитывается

А) 26 НПЗ Б) 22 НПЗ В) 30 НПЗ Г) 40 НПЗ

6. Общая протяжённость газопроводов России составляет

А) 140 тыс. км Б) 150 тыс. км В) 170 тыс. км Г) 120 тыс. км

7. По запасам газа Россия занимает в мире

А) 1-е место Б) 2-е место В) 3-е место

Ответы: 1) В; 2) А; 3) В; 4) А; 5) А; 6) Б; 7) А.

Работа у доски: учащийся выходит к доске и заполняет пустые клетки в опорно-логической схеме «Топливно-энергетический комплекс», комментирует свой ответ.

Работа с текстом. По запасам нефти (20 млрд. т, 13% мировых запасов) Россия занимает (1)четвёртое место после Саудовской Аравии, США и Ирака. Добыча нефти в последние годы постоянно (2)увеличивалась и в 2005 году составила 356 млн.т. основной нефтяной базой России является (3)Волго-Уральская , на территории которой добывается 70% всей нефти России. Крупнейшими из месторождений являются Самотлор, Сургут, Мегион. Однако из них уже извлечено 50-60% нефти. Однако, по оценкам специалистов, в данном регионе извлечено всего (4)25% нефти . Поэтому в ближайшей перспективе (до 2015 – 2020 гг.) эта база останется ведущей. Большие запасы нефти обнаружены на шельфе северных морей, омывающих Россию. Их доля в добыче нефти на сегодняшний день составляет (5)5-6%. Добытая нефть по трубопроводам передаётся для переработки на нефтеперерабатывающие заводы (НПЗ), которых насчитывается по всей стране (6)35 . Общая протяжённость нефтепроводов составляет (7)56 тыс. км. (Учащиеся получают карточки с текстом, выявляют ошибки в нём и исправляют их.)

Ответы: 1) второе (после Саудовской Аравии); 2) снижалась; 3) Западно-Сибирская; 4) 12%; 5) 1%; 6) 26 НПЗ; 7) 47 тыс. км.

3. Новая тема (30 мин)

План урока

  • Значение электроэнергетики (6 мин)
  • Типы электростанций (20 мин)
  • Энергосистемы, ЕЭС (4 мин)

Значение электроэнергетики . Электроэнергетика входит в состав топливно-энергетического комплекса, образуя в нём, как говорят, «верхний этаж». Можно сказать, что она является одной из базовых отраслей народного хозяйства России. Эта роль её объясняется необходимостью электрификации всех отраслей промышленности, а также различных сфер человеческой деятельности. Поэтому электроэнергетика, также как и машиностроение, по темпам своего развития должна опережать всё хозяйство страны. (Задание: вспомните условную пропорцию развития машиностроения и народного хозяйства страны; ответ: 1:2:4, это означает, что за единицу принимаются темпы развития всего народного хозяйства страны, машиностроение должно развиваться в 2 раза быстрее, а авангардные отрасли машиностроения (точное, энергетическое машиностроение) должны развиваться в 4 раза быстрее темпов развития промышленности страны в целом) В России в 2007 году было произведено 1 трлн. кВт*ч (4-е место в мире). Далее учащимся предлагается проанализировать две диаграммы. (Выводятся на интерактивную доску)

Рисунок 1. Основные потребители электроэнергии

Рисунок 2. Структура электроэнергетики России

Типы электростанций.

Дополнительный материал (учащиеся готовят дома доклады и представляют их на уроке). Пока учащиеся представляют свои доклады, остальные слушают их и попутно заполняют следующую таблицу. При выступлении учащиеся показывают местоположение основных электростанций на карте «Электроэнергетика России», а также демонстрируют на интерактивной доске фотографии ( , , , , , , , , , )различных типов электростанций.

Тип электростанций

Крупнейшие электростанции

Факторы

размещения

Строительство и эксплуатация

Воздействие на

окружающую среду

Березовская, Сургутская

Потребительский

АлЭС

(ПЭС, ГТЭС)

Не оказывают отрицательного воздействия.

Теплоэнергетика является крупнейшим в стране производителем электроэнергии. Основные факторы её размещения – сырьевой и потребительский. Суммарная мощность электростанций в России в 2000 году составила 212,8 млн. кВт*ч, в том числе тепловых – 146, 6 млн. кВт*ч. Крупнейшие теплоэлектростанции в стране расположены на востоке страны, например, в Восточной Сибири, где в качестве топлива используются самые дешёвые угли Канско-Ачинского угольного бассейна, - Березовская, Ирша-Бородинская и Назаровская ГРЭС, в Западной Сибири – Сургутская ГРЭС, работающая на попутном нефтяном газе, на Дальнем Востоке – Нерюнгринская ГРЭС на южно-якутском угле. Потребительский фактор наиболее ярко выражается в расположении ТЭС вблизи крупных городов и промышленных центров. строятся ТЭС быстро, строительство обходится дешево, но вырабатываемая электроэнергия имеет высокую себестоимость, так как используется невозобновимое топливо. Могут работать в постоянном режиме, но требуют длительной остановки в случае ремонта. В экологическом отношении – не самые оптимальные, так как выбрасывают в атмосферу много твердых и газообразных отходов.

Гидроэнергетика. Важнейшим фактором размещения ГЭС является сырьевой, то есть наличие гидроэнергоресурсов. ГЭС производят самую дешёвую электроэнергию, однако их размещение зависит от рельефа территории. Основной гидроэнергетический потенциал страны сосредоточен в Восточной Сибири (35%) и на Дальнем Востоке (30%). Поэтому крупнейшие ГЭС, мощностью до 6,4 млн. кВт*ч построены на Ангаре и Енисее – Иркутская, Братская, Усть-Илимская, Красноярская, Саяно-Шушенская и др. строительство электростанций происходит дольше и обходится дороже, что компенсируется дешёвой электроэнергией, а также упрощённой работой в энергосистеме. Они легко выключаются и включаются. Однако также оказывают неблагоприятное влияние на окружающую среду, что проявляется в затоплении огромных территорий, вырубке лесов, уничтожении почвенного покрова при строительстве, а также в загрязнении рек и речных долин, нарушение путей миграции рыб.

Атомная энергетика. Главный фактор размещения АЭС – потребительский. Основной промышленный потенциал и население России концентрируются в тех регионах, где ощущается дефицит топливных ресурсов и где ощущается огромная потребность в электроэнергии. К таким регионам относится практически вся Европейская Россия. Также АЭС должны располагаться вдали от разломов в земной коре и зон взаимодействия литосферных плит. Первая АЭС была построена в 1954 году в городе Обнинск Калужской области. В настоящее время действуют Кольская, Ленинградская, Смоленская, Курская, Нововоронежская и др. АЭС. В 2001 году введён первый, а в 2006 году – второй энергоблок Ростовской АЭС (всего 10 АЭС). Строительство АЭС, как и ГЭС, обходится дороже, но получаемая электроэнергия имеет низкую себестоимость вследствие применения сравнительно малого количества топлива. К примеру, 1 кг урана или плутония эквивалентен 2,5-3 тоннам высококачественного угля, 1,5-2 тоннам мазута. АЭС на нескольких тоннах атомного топлива способна работать в течении нескольких лет и беспрестанно обеспечивать энергией такие крупные города, как Москва, Санкт-Петербург и др. работа в энергосистеме отличается особой сложностью, так как требуются высококлассные специалисты для обслуживания АЭС, атомный реактор легко запустить, но сложно остановить. При работе без происшествий воздействие на среду незначительно, основные проблемы заключаются в захоронении радиоактивных отходов и обеспечении радиоактивной безопасности.

Электростанции, работающие на альтернативных источниках топлива, в России не получили пока столь широкого распространения. Их доля в обшей структуре электроэнергетики России составляет всего 1%. К ещё альтернативным источникам топлива относятся энергия ветра, солнца, приливов и отливов, а также геотермальная энергия. Строительство подобных электростанций долговременно и по его стоимости сопоставимо со строительством АЭС, но получаемая электроэнергия обходится еще дешевле, чем гидравлическая, так сырьё является возобновляемым и неисчерпаемым. Более того, подобные электростанции не оказывают на окружающую среду практически никакого отрицательного воздействия. Крупных электростанций, работающих на альтернативных источниках топлива в России мало. Крупнейшими из них являются Кислогубская ПЭС (приливная) в Мурманской области и Паужетская ГТЭС (геотермальная) в Камчатской области.

В итоге у учащихся после заполнения таблица должна выглядеть следующим образом (выводится на интерактивную доску):

Тип электростанций

Крупнейшие электростанции

Факторы

размещения

Строительство и эксплуатация

Воздействие на окружающую среду

ТЭС

Березовская, Ирша-Бородинская, Назаровская,

Нерюнгринская,

Сургутская

Сырьевой, потребительский

Строятся быстро и дешево, но потребляют большое количество топлива, на которое требуются большие затраты на добычу и переработку. Работают в постоянном режиме, но требуют длительной остановки при ремонтах.

Угольные ТЭС выбрасывают много твердых отходов (золы) и вредных газов в атмосферу при работе на мазуте выбросов меньше, на газе - совсем мало.

ГЭС

Иркутская, Братская, Усть-Илимская, Красноярская, Саяно-Шушенская

Сырьевой

Строятся дольше, дорогие, себестоимость энергии минимальна. Легко включаются и выключаются.

Происходит затопление речных долин, загрязняются стоки рек, нарушение путей миграции рыб

АЭС

Кольская,

Ленинградская, Смоленская, Курская,

Нововоронежская

Потребительский

Строятся долго и стоят дорого, но электроэнергия дешевле, чем на ТЭС. Используемые топливо - уран, не зависит от источников топливных ресурсов, требуют точности и надежности оборудования, квалификации и дисциплины работников.

При работе без происшествий воздействие на среду незначительно; проблема - захоронение радиоактивных отходов.

АлЭС

Паужетская ГТЭС,

Кислогубская ПЭС

Сырьевой

Строительство и эксплуатация обходятся дорого, себестоимость энергии низкая, легко выключаются и включаются.

Не оказывают отрицательного воздействия на окружающую среду.

Энергосистемы, ЕЭС. Энергосистема – группа электростанций разных типов, объединённых линиями электропередачи (ЛЭП) и управляемых из одного центра. Создание энергосистем повышает надёжность обеспечения потребителей электроэнергией и позволяет передавать её из района в район. В России – 73 крупные энергосистемы, которые, в свою очередь, слагают, районные энергосистемы: Центральную, Уральскую, Сибирскую и т. д. Большая часть районных энергосистем входит в состав Единой Энергосистемы России (ЕЭС). От неё пока изолирована энергосистема Дальнего Востока. ЕЭС России работает в параллельном режиме с энергосистемами Прибалтики, Украины, Казахстана, Беларуси, Финляндии, Китая и др. странами. Работа энергосистемы отличается большой сложностью в связи с необходимостью бесперебойного обеспечения электроэнергией всех отраслей народного хозяйства, инфраструктуры и населения. (Определение термина «Энергосистема» выводится на интерактивную доску)

Основные выводы: (выводятся на интерактивную доску)

  • Электроэнергетика является важнейшей частью народного хозяйства страны, так как обеспечивает электроэнергией абсолютно все сферы промышленности, сельского хозяйства, транспорта и инфраструктуры;
  • Большую часть электроэнергии России производят на ТЭС;
  • Наиболее дешёвую электроэнергию производят ГЭС и АЭС;
  • Работа всех электростанций страны объединена в районные энергосистемы, составляющие часть Единой Энергосистемы России.

3. Закрепление изученного материала. (4 мин)

Отметить в контурных картах местоположение упомянутых в ходе урока электростанций

Вопросы для закрепления:

  • Почему электроэнергетика считается авангардной отраслью народного хозяйства страны?
  • Перечислить основные типы электростанций.
  • Почему для работы на АЭС требуются высококвалифицированные специалисты?
  • Размещение каких типов электростанций зависит от форм рельефа?
  • Что такое «энергосистема»?
  • Назвать основные факторы размещения всех типов электростанций?
  • Какое место в мире Россия занимает по количеству производимой электроэнергии?

На доску выводится контурная карта с обозначенными на ней крупнейшими электростанциями, упомянутыми в ходе урока.

4. Домашнее задание: § 23, проанализировать рис. 44 на стр. 129, на контурной карте обозначить крупнейшие энергосистемы страны. (1 мин)

5. Подведение итогов, выставление оценок за урок. (1 мин)

Факторы размещения предприятий электроэнергетики, ведущие факторы: сырьевой и потребительский

ТЭК – ведущий фактор потребительский

КЭС (конденсационные) – ориентированы на источники сырья и потребителя

АЭС – на потребителя (уран – дешевое сырье)

ГЭС – ориентация на крупные реки (Волга, Енисей)

Геотермальные ЭС – на сырьё

Гелио ЭС – солнечная энергия

Ветровые ЭС – наличие ветра

Принципы развития электроэнергетики в России:

Концентрация производства электроэнергии путём строительства крупных ЭС использующих дешёвое топливо и гидра энергоресурсы

Комбинированное производство эл. Энергиии тепла.

Широкое освоение гидро энергоресурсов с учётом комплексного решения задач.

Развитие атомной энергетики.

Учёт экологических требований при создании объектов электроэнергетики

Создание энергосистем формирующих единую высоковольтную сеть страны.

Цели создания эн. системы:

Перераспределение нагрузки, обеспечение экономического режима использования эл. Энергии. Эн. система – это взаимообусловленное в пределах определенной территории сочетание ЭС разных типов работающих на общую нагрузку.

В России 70 районов эн. Систем, они образуют районные энергосистемы (Центральная, Уральская, Сибирская)

Тепловые электростанции (ТЭС). Основной тип электростанций в России - тепловые, работающие на органическом топливе (уголь, мазут, газ, сланцы, торф). Среди них главную роль играют мощные (более 2 млн кВт) ГРЭС - государственные районные электростанции, обеспечивающие потребности экономического района, работающие в энергосистемах.

На размещение тепловых электростанция оказывает основное влияние топливный и потребительский факторы. Наиболее мощные ТЭС расположены, как правило, в местах добычи топлива. Тепловые электростанции, использующие местные виды топлива (торф, сланцы, низкокалорийные и многозольные угли), ориентируются на потребителя и одновременно находятся у источников топливных ресурсов. Потребительскую ориентацию имеют электростанции, использующие высококалорийное топливо, которое экономически выгодно транспортировать. Что же касается тепловых электростанций, работающих на мазуте, то они располагаются преимущественно в центрах нефтеперерабатывающей промышленности.

Крупными тепловыми электростанциями являются ГРЭС на углях Канско-Ачинского бассейна, Березовская ГРЭС-1 и ГРЭС-2. Сургутская ГРЭС-2, Уренгойская ГРЭС (работает на газе).

На базе Канско-Ачинского бассейна создается мощный территориально-производственный комплекс. Проект ТПК предполагал создание на территории около 10 тыс. км 2 вокруг Красноярска 10 уникальных сверхмощных ГРЭС по 6,4 млн кВт. В настоящее время число запланированных ГРЭС уменьшено пока до 8 (по экологическим соображениям - выбросы в атмосферу, скопления золы в огромных количествах).

Гидравлические электростанции (ГЭС). На втором месте по количеству вырабатываемой электроэнергии находится ГЭС (в 1991 г. - 16,5%). Гидроэлектростанции являются весьма эффективным источником энергии, поскольку используют возобновимые ресурсы, обладают простотой управления (количество персонала на ГЭС в 15-20 раз меньше, чем на ГРЭС) и имеют высокий КПД (более 80%). В результате производимая на ГЭС энергия самая дешевая.

Огромное достоинство ГЭС - высокая маневренность, т. е. возможность практически мгновенного автоматического запуска и отключения любого требуемого количества агрегатов. Это позволяет использовать мощные ГЭС либо в качестве максимально маневренных "пиковых" электростанций, обеспечивающих устойчивую работу крупных энергосистем, либо в период суточных пиков нагрузки электросистемы, когда имеющихся в наличии мощностей ТЭС не хватает. Естественно, это под силу только мощным ГЭС.

Но строительство ГЭС требует больших сроков и больших удельных капиталовложений, ведет к потерям равнинных земель, наносит ущерб рыбному хозяйству. Доля участия ГЭС в выработке электроэнергии существенно меньше их доли в установленной мощности, что объясняется тем, что их полная мощность реализуется лишь в короткий период времени, причем только в многоводные годы. Поэтому несмотря на обеспеченность России гидроэнергетическими ресурсами гидроэнергетика не может служит основой выработки электроэнергии в стране.

Наиболее мощные ГЭС построены в Сибири, где осваиваются гидроресурсы наиболее эффективно: удельные капиталовложения в 2-3 раза ниже и себестоимость электроэнергии в 4-5 раз меньше, чем в европейской части страны.

Для гидростроительства в нашей стране было характерно сооружение на реках каскадов гидроэлектростанций. Каскад - это группа ГЭС, расположенных ступенями по течению водного потока с целью последовательного использования его энергии. При этом помимо получения электроэнергии решаются проблемы снабжения населения и производства водой, устранения паводков, улучшения транспортных условий. К сожалению, создание каскадов в стране привело к крайне негативным последствиям: потере ценных сельскохозяйственных земель, особенно пойменных, нарушению экологического равновесия.

ГЭС можно разделить на две основные группы; ГЭС на крупных равнинных реках и ГЭС на горных реках. В нашей стране большая часть ГЭС сооружалась на равнинных реках. Равнинные водохранилища обычно велики по площади и изменяют природные условия на значительных территориях. Ухудшается санитарное состояние водоемов. Нечистоты, которые раньше выносились реками, накапливаются в водохранилищах, приходится применять специальные меры для промывки русел рек и водохранилищ. Сооружение ГЭС на равнинных реках менее рентабельно, чем на горных. Но иногда для создания нормального судоходства и орошения это необходимо.

Самые крупные ГЭС в стране входят в состав Ангаро-Енисейского каскада: Саяно-Шушенская, Красноярская на Енисее, Иркутская, Братская, Усть-Илимская на Ангаре, строится Богучанская ГЭС (4 млн кВт).

В европейской части страны создан крупный каскад ГЭС на Волге: Иваньковская, Угличская, Рыбинская, Горьковская, Чебоксарская, Волжская им. В.И. Ленина, Саратовская, Волжская.

Сейчас в России действуют 9 АЭС общей мощностью 20,2 млн кВт. Еще 14 АЭС и ACT (атомная станция теплоснабжения) общей мощностью 17,2 млн кВт находятся в стадии проектирования, строительства или временно законсервированы.

В настоящее время введена практика международной экспертизы проектов и действующих АЭС. В результате проведенной экспертизы были выведены из эксплуатации 2 блока Воронежской АС теплоснабжения, планируется вывод Белоярской АЭС, остановлен первый энергоблок Нововоронежской АЭС, законсервирована практически готовая Ростовская АЭС, пересматривается еще раз ряд проектов. Было установлено, что места расположения АЭС в ряде случаев выбраны неудачно, а качество их сооружения и оборудования не всегда отвечало нормативным требованиям.

Были пересмотрены принципы размещения АЭС. В первую очередь учитывается: потребность района в электроэнергии, природные условия (в частности, достаточное количество воды), плотность населения, возможность обеспечения защиты людей от недопустимого радиационного воздействия при тех или иных аварийных ситуациях.

При этом принимается во внимание вероятность возникновения на предполагаемой площадке землетрясений, наводнений, наличие близких грунтовых вод. АЭС должны размещаться не ближе 25 км от городов с численностью более 100 тыс. жителей, для ACT - не ближе 5 км. Ограничивается суммарная мощность электростанции: АЭС - 8 млн кВт, ACT - 2 млн кВт.

Новым в атомной энергетике является создание АТЭЦ и ACT. На АТЭЦ, как и на обычной ТЭЦ, производится и электрическая, и тепловая энергия, а на ACT (атомных станциях теплоснабжения) - только тепловая. Строятся Воронежская и Нижегородская ACT. АТЭЦ действует в поселке Билибино на Чукотке. На отопительные нужды выдают низкопотенциальное тепло также Ленинградская и Белоярская АЭС. В Нижнем Новгороде решение о создании ACT вызвало резкие протесты населения, поэтому была проведена экспертиза специалистами МАГАТЭ, давшими заключение о высоком качестве проекта. Преимущества АЭС сводятся к следующему: можно строить в любом районе независимо от его энергетических ресурсов; атомное топливо отличается необыкновенно большим содержанием энергии (в 1 кг основного ядерного топлива - урана - содержится энергии столько же, сколько в 25 000 т угля: АЭС не дают выбросов в атмосферу в условиях безаварийной работы (в отличие от ТЭС), не поглощают кислород из воздуха.

Работа АЭС сопровождается рядом негативных последствий:

1. Существующие трудности в использовании атомной энергии - захоронение радиоактивных отходов. Для вывоза со станций сооружаются контейнеры с мощной защитой и системой охлаждения. Захоронение производится в земле на больших глубинах в геологически стабильных пластах.

Под площадкой электростанции (КЭС, ТЭЦ, АЭС) понимается собственно промплощадка ТЭС, на которой размещены все основные сооружения, а также земельные участки, необходимые для размещения других объектов, входящих в комплекс сооружений ТЭС (водохранилище, золошлакоотвалы, склад топлива и слабоактивных отходов, очистные сооружения, открытые распределительные устройства и т. д.,), включая объекты жилищно-гражданского строительства, трассы подъездных железных и автомобильных дорог и коридоры для линий электропередачи.

Выбор площадки новой электростанции является начальным и одним из наиболее ответственных этапов проектирования, так как принятое решение в значительной степени определяет сроки и стоимость строительства, возможность эффективной эксплуатации объекта. Оптимальное решение этой задачи возможно только в результате тщательного анализа вопросов экономического, социального, физико-географического, технического характера, а также перспектив развития энергетики и сопряженных с ней отраслей. Только учет всех факторов, прямо или косвенно влияющих на размещение энергетического объекта, позволяет правильно выбрать площадку для его строительства.


Вопрос о размещении энергетического объекта решается последовательно, начиная с разработки перспективного плана развития отрасли и кончая утверждением проекта электростанции.

На основе перспективного плана развития энергетики составляются схемы развития энергосистем и межсистемных связей в увязке с перспективами развития топливных ресурсов, балансами энергосистем, размещением и энергоемкостью потребителей. В указанных схемах развития определяются экономический и административный районы возможного размещения ТЭС. Руководствуясь утвержденной схемой развития энергосистемы, разрабатываются обосновывающие материалы (ОМ) строительства ТЭС, в которых определяются конкурентные пункты размещения и на основе их технико-экономического сравнения и согласований с заинтересованными организациями и ведомствами устанавливается район строительства новой электростанции. В ОМ строительства новой электростанции определяется ее тип (КЭС, ТЭЦ, АЭС, АТЭЦ), единичная мощность агрегатов, их количество, для ТЭС на традиционном топливе род топлива (с указанием района добычи).


При выборе площадки для новой ТЭС следует учитывать требования, предъявляемые к строительству тепловой электростанции по обеспечению эффективности капитальных вложений, снижению эксплуатационных расходов, а также требования строительной географии. Основными условиями, предопределяющими выбор места размещения ТЭС, являются:

  • наличие площадей, достаточных для размещения всех сооружений электростанции, при этом размеры и конфигурации площадки должны обеспечивать возможность подтвержденного технико-экономическими расчетами расширения;
  • соответствие площадки требованиям технологического процесса;
  • благоприятный рельеф местности и геологические условия, обеспечивающие быстрое сооружение ТЭС с минимальными затратами;
  • наличие железнодорожной связи с железнодорожными путями общего пользования и местом добычи топлива; автодорожной связи с автодорогами общего пользования, с железнодорожной станцией примыкания, с районным или областным центром;
  • близость карьеров или залежей строительного песка и камня;
  • наличие достаточных источников питьевого и технического водоснабжения;
  • возможность расположения ТЭС на землях несельскохозяйственного назначения или непригодных для сельского хозяйства (при отсутствии таких земель - на сельскохозяйственных угодьях низкого качества);
  • возможность расположения площадки не в местах залегания полезных ископаемых, не в зонах обрушения выработок и не на карстовых или оползневых участках.
Площадка новой электростанции должна располагаться в увязке с системными и межси-стемными связями и обеспечивать возможность выдачи мощности по намечаемым ЛЭП. Расположение площадки ТЭС, потребляющей привозное топливо, должно увязываться со схемой развития железных и автомобильных дорог и грузопотоков по ним, водных путей, трубопроводного или других видов транспорта. Для ТЭЦ площадка располагается, как правило, в центре тепловых нагрузок с учетом перспективного развития энергопотребителей.

Места золошлакоотвалов и шламонакопи-телей должны располагаться с подветренной стороны за пределами площадки и охранной зоны источников водоснабжения.

Производство изысканий, начиная с выбора площадки, следует выполнять в максимально полном объеме, с тем чтобы на стадии рабочего проектирования производить только уточнения изысканий под отдельные объекты или узлы ТЭС. Недостаточность материалов изысканий по выбору площадок к моменту начала проектирования приводит, как правило, к удорожанию и удлинению сроков строительства, а очень часто и к увеличению эксплуатационных затрат.

Наличие на площадке высокого уровня грунтовых вод значительно снижает расчетное сопротивление грунта и создает трудности при производстве строительных работ, так как при этом требуются водоотлив, гидроизоляция подземных сооружений и дренаж промплощадки. В связи с необходимостью увеличения откосов котлованов увеличивается объем земляных работ. Удорожание строительства из-за высокого уровня грунтовых вод составляет примерно 2-3 % общей стоимости строительства. При сооружении электростанции стоимостью 800-1200 млн. руб. удорожание от высокого уровня грунтовых вод составит 16-36 млн. руб.

Непременным условием является размещение площадки в зоне, не затопляемой паводковыми водами.

Основная задача проектных организаций при разработке генеральных планов ТЭС - это сокращение отвода и обеспечение рационального использования земель (табл. 1.1). Приближенные значения площадей, необходимых для размещения сооружений КЭС и ТЭЦ, приведены в табл. 1.2, из которой видно, что рост мощности электростанций с 400 до 9000 МВт вызывает сравнительно незначительное увеличение территории самой электростанции в пределах ограды. Поэтому удельные затраты на подготовку и освоение площадки, на все виды коммуникаций, благоустройство, связь и сигнализацию при сооружении мощных ТЭС уменьшаются в несколько раз. Желательно, чтобы площадки имели соотношение сторон 1:2 или 2,5:4.




Потребность в земельных ресурсах для размещения золошдакоотвалов определяется для первой очереди ТЭС исходя из 5-летнего периода эксплуатации, а общая площадь - исходя из 25-летнего периода эксплуатации. При этом в дальнейшем предполагается наращивание золоотвалов без увеличения их площади. Предполагается, что использование золошлаковых остатков в строительстве должно значительно возрасти, что приведет к сокращению объемов золоотвалов.

Для перспективных типов КЭС в зависимости от их мощности и вида угольного топлива потребность в отчуждении земель для золоотвалов лежит в пределах 36-390 га (для канско-ачинских углей - 150 м 2 /МВт, для кузнецких - 260 м 2 /МВт).

Для ТЭЦ, как правило, выбор золошлакоотвалов следует производить из расчета 5-летнего периода эксплуатации с использованием золошлаков в строительстве.

Под золошлакоотвалы наиболее целесообразно отводить непригодные или малопригодные даже для промстроительства земли: овраги, выработанные карьеры и т. п. При этом необходимо учитывать, что эти участки после засыпки их золошлаками могут быть приведены в культурное состояние планировкой поверхности с последующим нанесением слоя грунта и посевом трав.

Показателями землеиспользования могут Служить удельный отвод земель (га/МВт или га/1000 МВт) и плотность застройки.

Удельный отвод земель для КЭС изменяется в широких пределах в зависимости от используемого топлива: атомные 0,12-3,41 га/ МВт; угольные - 0,28-2,21 га/МВт; газомазутные - 0,11-1,88 га/МВт.

Разница в удельных показателях в основном определяется системой технического водоснабжения. Меньшие значения относятся к прямоточным системам на реках, прямоточно-оборотным с использованием комплексных водохранилищ или больших озер и оборотным системам с градирнями, а большие значения - к системам со вновь создаваемыми водохранилищами. Удельные потребности в земле, связанные с типом водоохладителя, составляют от 0,02 до 2,3 га/МВт, что соответствует 20-70 % общего отвода земель.

Создание искусственных водохранилищ на реках и водохранилищ наливного типа связано с затоплением больших земельных площадей. Так, для крупных электростанций на традиционном топливе мощностью 4000-5000 МВт площадь водохранилища составляет 2000-2500 га (0,5 га/МВт), а на ядерном горючем - 3200-4000 га (0,8 га/МВт), или 80-90% общего отвода земель. Следует отметить, что водоохладитель при глубине от 8 до 20 м с учетом использования холодных глубинных вод может иметь размеры примерно в 1,5 раза меньшие, чем при глубине от 2,5 до 4 м. Площади, занимаемые градирнями, составляют около 30-35 га.

При переходе от газомазутного к угольному топливу удельная потребность в земле возрастает в основном из-за строительства золоотвалов, на долю которых приходится 20-40 % отводимых земельных угодий.

На площадке ТЭС предусматривают коридоры для выхода линий электропередачи с ОРУ, расположенных на территории электростанции. Ширина коридора, занимаемого ЛЭП, определяется числом линий и их напряжением (табл. 1.3).



Отвод земель под промышленную площадку, склад топлива и временные здания и сооружения в процентном отношении сравнительно невелик (10-20%). Абсолютные размеры отводимых земель составляют: под пром-площадку - от 22 до 140 га; под склад топлива - от 5 до 60 га; под временные здания и сооружения - от 30 до 70 га.

Анализ проектных решений показал, что многие КЭС, аналогичные по мощности, топливу и назначению, сильно отличаются по размерам промплощадки и стройбазы. Указанный разброс в большинстве случаев объясняется различной плотностью застройки территории, которая изменяется от 36 до 80 %, что свидетельствует о наличии резервов снижения потребности в отводе земли при строительстве КЭС.

Потребность в земельных ресурсах для прочих объектов КЭС (транспортные коммуникации, очистные сооружения и др.), включая неиспользуемые земли, оценивается ориентировочно для новых КЭС в размерах 120 % площади основной промышленной площадки (промплощадка и стройбаза). Указанное соотношение может быть принято для оценки отчуждаемых земель для перспективных типов КЭС.

Площади, занимаемые временными зданиями и сооружениями, определяются по эмпирической формуле, полученной на основе анализа проектных показателей 28 электростанций с учетом тенденции к дальнейшему сокращению отводимых площадей в 1990-2000 г.:


где S уд - удельная площадь временных зданий и сооружений, м 2 /МВт; N ТЭС, N бл - установленная мощность ТЭС и блока, МВт.

Площади жилых поселков определяются в зависимости от численности строительно-монтажных и эксплуатационных кадров.

Размер территории жилого поселка определяется исходя из нормы 10 га на 1000 жителей. Указанная величина соответствует норме жилой площади 10 м 2 /чел. Намеченное увеличение нормы благодаря повышению этажности застройки, по всей вероятности, не приведет к росту удельной площади жилпоселка.

В основу прогноза потребности КЭС в земельных ресурсах положены Нормативные показатели по отводу и использованию земель для строительства электростанций, разработанные институтом Теплоэлектропроект (1974 г.). Приведенные в табл. 1.4 Нормативные показатели основной промышленной площадки соответствуют этапу проектирования 1976-1980 гг. й могут быть использованы для оценки потребности КЭС в земельных ресурсах.



Площадки электростанций зачастую размещаются на землях, пригодных для использования в сельском хозяйстве. Опыт показал, что невозможно запроектировать электростанцию, которая располагалась бы без использования пашни, лугов или других сельскохозяйственных угодий. Сельскохозяйственные угодья, занимаемые промышленностью, и в том числе электростанциями, измеряются сотнями тысяч гектаров. Необходимо учитывать ценность земель и стоимость их восстановления, что позволит повысить экономическую обоснованность решений при выборе площадки. При обосновании изъятия сельскохозяйственных угодий следует использовать удельные показатели использования сельскохозяйственных земель S с.х уд и пашни S п уд:
где F c.x - площадь изъятых сельскохозяйственных земель, га; F п - площадь изъятых пахотных земель, га; N уст - установленная мощность электростанций, МВт.

Необходимо рассматривать не только земли, бывшие в сельскохозяйственном обороте, но и земли пригодные для использования. При экономическом обосновании необходимости размещения площадки электростанции на сельскохозяйственных угодьях важно проанализировать и вопрос о времени использования земель для строительства и эксплуатации. Это необходимо, с одной стороны, для определения потерь сельскохозяйственной продукции во время строительства и эксплуатации ТЭС, а с другой, для оценки стоимости восстановления земель (приложение II).

Методика определения потерь сельского хозяйства от изъятия земель, а также стоимости их восстановления и эффекта от строительства компенсирующих предприятий изложена в «Инструкции о порядке возмещения землепользователем убытков, причиненных изъятием или временным занятием земельных участков, а также потерь сельскохозяйственного производства, связанных с изъятием земель для несельскохозяйственных нужд».

Санитарные нормы и нормы охраны среды

Площадка ТЭС, стройбаза, жилой поселок, водоохладитель, золошлакоотвалы должны быть расположены так, чтобы между ними были минимально допускаемые санитарными нормами расстояния, что уменьшает длину связывающих их коммуникаций, а следовательно, и их стоимость.

Площадки, намеченные для строительства электростанций и поселков, должны удовлетворять санитарным требованиям в отношении загазованности, прямого солнечного облучения, естественного проветривания и др. Тепловые электростанции должны быть расположены по отношению к ближайшему жилому району с подветренной стороны для господствующих ветров и отделены от жилых районов санитарно-защитными зонами (разрывами). Господствующее направление ветров следует принимать по средней розе ветров теплого периода года на основе многолетних наблюдений.

Санитарно-защитной зоной считают территорию между тепловой электростанцией (дымовыми трубами) и жилыми и культурно-бытовыми зданиями. В санитарно-защитной зоне допускается располагать пожарное депо, помещения охраны, гаражи, склады, административно-служебные здания, столовые, амбулатории, торговые здания, бани, прачечные и т. п., а также жилые здания для аварийного персонала и охраны. Размеры санитарно-защитной зоны ТЭС зависят от зольности топлива и его часового расхода и согласовываются с органами Государственной санитарной инспекции (ГСИ). Для электростанций, работающих на газовом и жидком топливе, санитарно-защитные зоны принимают как для ТЭС на угольном топливе при зольности топлива до 10%.

В соответствии с ГОСТ 17.2.3.02-78, устанавливающим допустимые выбросы в атмосферу, для предотвращения и максимального снижения организованных и неорганизованных выбросов вредных веществ при работе ТЭС должны быть использованы наиболее современные технология, методы очистки и другие технические средства в соответствии с требованиями санитарных норм проектирования промышленных предприятий. Предельно допустимые выбросы (ПДВ) и временно согласованные выбросы (ВСВ) и их обоснование должны быть согласованы с органами, осуществляющими государственный контроль за охраной атмосферы от загрязненйя, и утверждены в установленном порядке.

Рассеивание вредных веществ в атмосфере за счет увеличения высоты их выброса допускается только после применения всех имеющихся современных технических средств сокращения выбросов.

С целью создания более благоприятных условий для рассеивания оставшихся выбросов сооружаются дымовые трубы высотой 250-420 м и более. Такая высота обеспечивает концентрацию выбросов на уровне дыхания в пределах, допускаемых санитарными нормами. Предельные концентрации вредных веществ, определенные нормами СН 245-71 и инструкцией Минздрава СССР 2063-79, приведены в табл. 1.5.


Источники водоснабжения

Основное количество воды на ТЭС требуется для конденсации отработавшего в турбине пара. В табл. 1.6 приведены расходы воды для летнего периода при прямоточной системе технического водоснабжения (для зимнего периода количество воды может быть уменьшено, как правило, в 1,3 раза). При подсчете общего расхода воды не следует учитывать расход воды на гидравлическое золошлакоудаление, который в 10-15 раз превышает количество удаляемых шлаков и золы, причем безвозвратная потеря воды составляет 20-25 % общего расхода на золошлакоудаление. Вода на подпитку системы гидравлического золошлакоудаления подается, как правило, после использования ее в конденсаторах турбин.



С ростом мощности электростанций техническое водоснабжение приобретает все более решающее значение при выборе места размещения ТЭС. С одной стороны, трудно выбрать площадку КЭС у реки, которая могла бы служить источником для прямоточного водоснабжения. С другой стороны, стоимость технического водоснабжения при переходе от прямоточной системы на оборотную возрастает с 4-5 до 20 руб и более на 1 кВт установленной мощности. Исключительно большое значение приобретает возможность размещения электростанций вблизи рек, озер и устройства систем прямоточного водоснабжения. Прямоточная система обеспечивает наилучшие эксплуатационные показатели, так как имеет самую низкую температуру охлаждающей воды и обеспечивает минимальные затраты на строительство.

Однако применение прямоточных систем ограничивается требованиями Правил охраны поверхностных вод от загрязнения сточными водами, согласно которым подогрев воды в источнике водоснабжения в расчетном створе после сброса теплых вод ТЭС не должен быть более 3°С летом и 5°С зимой. Это обстоятельство требует, чтобы минимальные расходы воды в реке но крайней мере в 3 раза превышали потребные расходы ТЭС.

Технико-экономическими расчетами определено, что удельные капитальные вложения в систему технического водоснабжения на 1 кВт установленной мощности составляют в среднем:

  • при использовании для технического водоснабжения ТЭС водохранилищ гидроэлектростанций 6-7 руб.;
  • при специально создаваемых речных водохранилищах-охладителях 11 -12 руб.;
  • при наливных водохранилищах-охладителях 14 руб.;
  • при оборотных системах с градирнями 18-24 руб.
Размещение ТЭС у рек должно производиться с учетом расположения на них работающих или проектируемых гидроэлектростанций. Если гидроэлектростанция действует, то при выборе площадки ТЭС в верхнем бьефе следует учитывать колебания отметок воды между НПУ (нормальный подпертый уровень) и УМО (уровень мертвого объема) водохранилища. Колебания отметок воды и удаленность ТЭС от русла реки может привести к усложнению и удорожанию гидротехнических сооружений, на что должно быть обращено при выборе площадки особое внимание.

Следует иметь в виду, что при использовании водохранилищ ГЭС желательно возможно меньшее колебание уровня воды в нем. Колебание уровня воды свыше 8-10 м ставит под сомнение целесообразность использования водохранилища ГЭС для водоснабжения ТЭС, так как увеличение подъема воды только на 1 м вызывает дополнительный расход электроэнергии на собственные нужды ТЭС мощностью 4000 МВт в размере 15-20 млн. кВт-ч в год, что при стоимости 1 коп/(кВт-ч) принесет ущерб народному хозяйству в размере около 150-200 тыс. руб/год. Кроме того, колебание уровня воды вызывает дополнительное увеличение капитальных вложений в водозаборные и водосбросные сооружения ТЭС. Таким образом, при выборе площадки следует тщательно учитывать возможные колебания уровня воды в водохранилище или реке.

Желательно, чтобы отметка планировки площадки превышала пьезометрический уровень воды в сбросных каналах примерно на 3 м, что позволяет использовать сифонное действие сливных трубопроводов циркуляционной воды в пределах 7,5 м (из расчета расположения выходного патрубка конденсатора на высоте 4,5 м над полом машинного отделения).

Выполнение этих условий в некоторых случаях может привести к большим объемам земляных работ при планировке площадки, т. е. к росту капитальных затрат на сооружение ТЭС. Невыполнение же этих условий может в свою очередь привести к увеличению расходов электроэнергии на собственные нужды ТЭС из-за необходимости подачи воды на дополнительную высоту. Обоснованное решение этого вопроса при определении нулевых отметок главного корпуса требует специальных технико-экономических расчетов.

Снижению расходов электроэнергии на собственные нужды за счет снижения напора насосов циркуляционного водоснабжения, как правило, уделяется при выборе площадок ТЭС большое внимание. Если раньше напор этих насосов составлял 15-17 м, то теперь для прудовых систем стремятся выбирать площадки, для которых требуемый напор насосов был бы не более 7-12 м. Для этого при проектировании ТЭС большой мощности главный корпус с машинным залом, обращенным в сторону водного источника, предпочитают размещать у самого берега.

При выборе места водохранилища необходимо стремиться к уменьшению объемов работ по сооружению каналов, плотин, дамб и в то же время находить площадки с удовлетворительными геологическими условиями (допустимая фильтрация под гидросооружениями и через ложе водохранилища). При отчуждении земель для площадки и водохранилища следует избегать больших сносов селений, переноса дорог и других искусственных сооружений, а также затоплений ценных сельскохозяйственных угодий.

При выборе мест размещения электростанций необходимо выявить источники питьевой воды. Это особенно важно для районов с бедными водными ресурсами. Потребность в воде для поселка эксплуатационных и строительно-монтажных кадров (при максимальном развороте работ) для ТЭС мощностью 600-1200 МВт - 180 м 3 /ч, 1200-2400 МВт - 240 м 3 /ч, 4000 МВт - около 400 м 3 /ч, питьевую воду следует искать и при наличии реки, так как при расположении площадки ТЭС ниже сброса в реку хозяйственных, фекальных и промышленных стоков воду для питьевых целей забирать из реки не разрешается. В качестве источника хозпитьевого водоснабжения стараются использовать в первую очередь подземные воды.

Транспортные связи

Одним из основных условий при выборе размещения новой ТЭС является наличие железнодорожной связи с железнодорожными путями общего пользования и местом добычи топлива и автодорожной связи с железнодорожной станцией примыкания, с районным или областным центром. При размещении ТЭС вблизи места добычи целесообразно пути для подачи топлива сооружать без захода на железнодорожные пути МПС. Желательно, чтобы протяженность внешних железнодорожных путей не превышала 8-12 км при разности отметок начала и конца пути, обеспечивающей соблюдение нормальных уклонов пути при наименьших объемах земляных работ. Кроме того, следует предусмотреть, чтобы на трассе железнодорожных путей не требовалось строительства крупных искусственных сооружений. Примыкание к железнодорожным путям следует осуществлять по направлению грузопотока к электростанции.

Автодорожную связь площадки ТЭС с дорогами общего пользования, с железнодорожной станцией, районными и областными центрами следует иметь также возможно более короткой, без сложных искусственных сооружений.

Железнодорожные пути ТЭС состоят из трех отдельных участков: приемо-сдаточных путей на железнодорожной станции примыкания к магистральной железной дороге; путей на площадке электростанции (на разгрузочные устройства, склад топлива, главный корпус); соединительных путей между приемной станцией и путями на площадке электростанции. Приемо-сдаточные пути могут быть сооружены вне железнодорожной станции, если она стеснена, и располагаться непосредственно возле ТЭС. Для этой цели при выборе площадки электростанции следует предусматривать дополнительную площадь 4-5 га.

Топливо по железнодорожным путям подается составами, при этом грузоподъемность и количество маршрутов в сутки зависят от марки угля, его теплоты сгорания и мощности электростанции. На электростанцию мощностью 1260 МВт необходимо подать в сутки 24700 т топлива, или 11 маршрутов по 3200 т, а мощностью 4000 МВт - 51000 т, или 12 маршрутов по 6000 т. По схеме топливоподачи на ТЭС все составы должны быть приняты на приемо-сдаточные пути, затем поданы к ваго-ноопрокидывателям и после повагонной разгрузки выведены на порожняковый путь.

Для того чтобы условия работы железнодорожного транспорта на ТЭС не оказывались тяжелыми, при выборе площадки электростанции проектирующей организацией должно быть проведено рекогносцировочное обследование существующих железнодорожных путей и должны быть определены: место примыкания железнодорожной ветки к магистральной железной дороге; место устройства приемо-сдаточных путей (на железнодорожной станции примыкания или на особой станции, расположенной около ТЭС, или на самой площадке электростанции); длина соединительной железнодорожной ветки и возможность присоединения к этой ветке; наличие на трассе искусственных сооружений (мостов, путепроводов); примерные условия сооружения полотна железнодорожного пути (грунты на трассе, наличие скальных выемок и пр.); возможные уклоны или подъемы, а также радиусы закругления.

Примерно эти же вопросы должны быть рассмотрены при выборе площадки и для автомобильных путей с определением необходимой категории дорог.

ТЭС — это предприятие по выработки электроэнергии и тепла. Когда строят электростанцию, то руководствуются следующим, что важнее: расположение рядом источника топлива или расположение рядом источника потребления энергии.

Размещение ТЭС в зависимости от источника топлива.

Давайте представим, что, допустим, мы имеем большое местророждения угля. Если мы здесь построим ТЭС, то снизим издержки на транспортировку топлива. Если учесть, что в стоимости топлива транспортная составляющая довольно большая, то имеет смысл строить ТЭС рядом с местами добычи полезных ископаемых. Но что мы будем делать с полученным электричеством? Хорошо, если есть куда его поблизости сбывать, существует дефицит электричества в районе.

А что делать, если нет потребности в новых электрических мощностях? Тогда мы получавшуюся электроэнергию будем вынуждены передавать по проводам на дальние расстояния. А для того, чтобы передать электричество на дальние расстояния без больших потерь, нужно передавать по высоковольтным проводам. Если их нет, то их нужно будет тянуть. В дальнейшем линии электропередач потребуют обслуживания. Всё это будет также требовать денег.

Размещение ТЭС в зависимости от потребителя.

Большинство новых ТЭС у нас в стране размещают в непосредственной близости от потребителя.

Это связано с тем, что выгоду от размещения ТЭС в непосредственной близости от источника топлива съедает стоимость транспортировки на дальние расстояния по линиям электропередач. К тому же, в таком случае, присутствуют большие потери.

При размещении электростанции непосредственно рядом с потребителем можно выиграть и еще в том случае, если построить ТЭЦ. Вы можете подробней прочитать, . В таком случае существенно снижается себестоимость отпускаемого тепла.

В случае размещения непосредственно рядом с потребителем отпадает надобность строить высоковольтные линии электропередач, достаточно будет напряжения 110 кВ.

Из всего выше написанного можно сделать вывод. Если источник топлива находится далеко, то в настоящей обстановке ТЭС строить лучше, все же, рядом с потребителем. Большая выгода получается, если источник топлива и источник потребления электроэнергии находятся рядом.

Уважаемые посетители! Теперь у Вас появилась возможность посмотреть России.

На размещение различных видов электростанций влияют различные факторы. На размещение тепловых электростанций оказывает основное влияние топливный и потребительский факторы. Наиболее мощные ТЭС расположены, как правило, в местах добычи топлива, чем крупнее электростанция, тем дальше она может передавать электроэнергию. Тепловые электростанции, использующие местные виды топлива, ориентированы на потребителя и одновременно находятся у источников топливных ресурсов. Потребительскую ориентацию имеют электростанции, использующие высококалорийное топливо, которое экономически выгодно транспортировать. Электростанции, работающие на мазуте, располагаются преимущественно в центрах нефтеперерабатывающей промышленности.

Большая часть тепловых станций расположена в европейской части страны и на Урале. Вместе с тем только одна десятая топливо - энергетических ресурсов расположена на этой территории. До недавнего времени европейская часть страны обходилась своим топливом. Донбасс давал большую часть требуемого угля. Теперь положение изменилось. Добыча собственных углей уменьшилась, так как резко ухудшились горно-геологические условия добычи.

Иное положение с топливо - энергетическими ресурсами Сибири. Высококалорийные угли залегают в Кузбассе. Добываются они с глубин в 3-5 раз меньших, чем в Донбассе, и даже открытым способом с поверхности. В другом богатейшем Камско-Ачинском месторождении мощность угольных пластов достигает 100 м, залегают они на небольшой глубине, их добыча ведется открытым способом, себестоимость добычи одной тонны в 5-6 раз меньше, чем в шахтах европейской части.

На базе Камско-Агинского бассейна создается мощный топливо - энергетический комплекс (КАТЭК). По проекту КАТЭКа предполагалось создать на территории около 10 тыс. км 2 вокруг Красноярска десять уникальных сверхмощных ГРЭС по 6,4 млн. кВт. В настоящее время число запланированных ГРЭС уменьшилось пока до восьми (по экологическим соображениям - выбросы в атмосферу, скопления золы в огромных количествах). В настоящее время начато сооружение только первой очереди КАТЭКа. В 1989 году введен в эксплуатацию первый агрегат Березовской ГРЭС-1 мощностью 800 тыс. кВт и уже решен вопрос о строительстве ГРЭС-2 и ГРЭС-3 такой же мощности (на расстоянии 9 км одна от другой).

Крупными тепловыми электростанциями на углях Камско-Ачинского бассейна являются Березовская ГРЭС-1 и ГРЭС-2, Сургутская ГРЭС-2, Уренгойская ГРЭС.

Так как гидравлические электростанции используют для выработки электроэнергии силу падающей воды, то, соответственно, ориентированы на гидроэнергетические ресурсы. Огромные гидроэнергетические ресурсы России расположены неравномерно. На Дальнем Востоке и в Сибири их 66% от общих. Поэтому естественно, что наиболее мощные ГЭС построены в Сибири, где освоение гидроресурсов наиболее эффективно: удельные капиталовложения в 2-3 раза ниже и себестоимость электроэнергии в 4-5 раз меньше, чем в европейской части страны.

Для гидростроительства в нашей стране было характерно сооружение на реках каскадов гидроэлектростанциях. Каскад-группа ТЭС, расположенных ступенями по течению водного потока для последовательного использования его энергии. При этом помимо получения электроэнергии, решаются проблемы снабжения населения и производства водой, устранение паводков, улучшения транспортных условий. К сожалению, создание каскадов в стране привело к крайне негативным последствиям: потере ценных сельскохозяйственных земель, нарушению экологического равновесия.

ГЭС можно разделить на две основные группы: ГЭС на крупных равнинных реках и ГЭС на горных реках. В нашей стране большая часть ГЭС сооружалась на равнинных реках. Равнинные водохранилища обычно велики по площади изменяют природные условия на значительных территориях. Ухудшается санитарное состояние водоемов: нечистоты, которые раньше выносились реками, накапливаются в водохранилищах, приходится применять специальные меры для промывки русел рек и водохранилищ. Сооружение ГЭС на равнинных реках менее рентабельно, чем на горных, но иногда это необходимо, например, для создания нормального судоходства и орошения.

Самые крупные ГЭС в стране входят в состав Ангаро-Енисейского каскада: Саяно-Шушенская, Красноярская - на Енисее, Иркутская, Братская, Усть-Илимская - на Ангаре, Богучанская ГЭС. В европейской части страны создан крупнейший каскад ГЭС на Волге. В его состав входят: Иваньковская, Рыбинская, Угличская, Городецкая, Чебоксарская, Волжская (вблизи Самары), Саратовская, Волжская (вблизи Волгограда).

Атомные электростанции можно строить в любом районе, независимо от его энергетических ресурсов: атомное топливоотличается большим содержанием энергии (в 1 кг основного ядерного топлива- урана - содержится энергии столько же, сколько в 2500 т. угля). В условиях безаварийной работы АЭС не дают выбросов в атмосферу, поэтому безвредны для потребителя. В последнее время создаются АТЭЦ и АСТ. на АТЭЦ, как и на обычной ТЭЦ, производится и электрическая и тепловая энергия, а на АСТ. только тепловая. Строятся Воронежская и Горьковская АСТ. АТЭЦ действует в поселке Билибино на Чукотке. На отопительные нужды выдают низко потенциальное тепло также Ленинградская и Белоярская АЭС. В Нижнем Новгороде решении о создании АСТ вызвало резкие протесты населения, поэтому была проведена экспертиза специалистами МАТНТЭ, которые пришли к выводу,что проект выполнен на высшем уровне.

Каждый регион практически располагает каким - либо видом “нетрадиционной” энергии и в ближайшей перспективе может внести существенный вклад в топливо - энергетический баланс России.