Научные законы и их особенности. Понятие научного закона: законы природы и законы науки

Научные законы и их особенности. Понятие научного закона: законы природы и законы науки

1. Понятие научного закона: законы природы и законы науки

Научное знание выступает как сложно организованная система, которая объединяет всевозможные формы организации научной информации: научные понятия и научные факты, законы, цели, принципы, концепции, проблемы, гипотезы, научные программы и т. д.

Научное познание это непрерывный процесс, т.е. единая развивающаяся система сравнительно сложной структуры, которая формулирует единство стабильных взаимосвязей между элементами данной системы. Структура научного познания может быть изображена в разнообразных срезах и следовательно в совокупности своих специфичных элементов.

Центральным звеном научного знания является теория. В современной методологии науки выделяют следующие основные элементы теории.

1. Исходные начала - фундаментальные понятия, принципы, законы, уравнения, аксиомы и т. п.

2. Идеализированные объекты - абстрактные модели существенных свойств и связей изучаемых предметов (например, «абсолютное черное тело», «идеальный газ» и т. п.).

3. Логика теории - совокупность установленных правил и способов доказательства, нацеленных на прояснение структуры и изменения знания.

4. Философские установки и ценностные факторы.

5. Совокупность законов и утверждений, выведенных в качестве следствий из основных положений данной теории в соответствии с конкретными принципами.

Научный закон это форма упорядочивания научного знания, заключающаяся в формулировке общих утверждений о свойствах и взаимоотношениях изучаемой предметной области. Научные законы представляют собой внутреннюю, существенную и устойчивую связь явлений, обуславливающую их упорядоченное изменение.

Понятие научного закона стало формироваться в XVI-XVII вв. в период создания науки в современном смысле этого слова. Долгое время считалось, что данное понятие универсально и распространяется на все области познания: каждая наука призвана определять законы и на их основе обрисовывать и разъяснять изучаемые явления. О законах истории говорили, в частности, О. Конт, К. Маркс, Дж.С. Милль, Г. Спенсер. В конце IXX века В. Виндельбанд и Г. Риккерт выдвигали идею о том, что наряду с генерализирующими науками, имеющими своей задачей открытие научного закона, имеются индивидуализирующие науки, не формулирующие никаких своих законов, а представляющие исследуемые объекты в их уникальности и неповторимости.

Основными чертами научных законов являются:

Необходимость,

Всеобщность,

Повторяемость,

Инвариантность.

В научном познании закон представляется как выражение необходимого и общего отношения между отмечаемыми явлениями, например, между заряженными частицами любой природы (закон Кулона) или любыми телами, обладающими массой (закон тяготения) в физике. В разнообразных течениях современной философии науки понятие закона сопоставляют с понятиями (категориями) сущности, формы, цели, отношения, структуры. Как показали дискуссии в философии науки XX в., входящие в определение закона свойства необходимости и общности (в пределе - всеобщности), а также соотношения классов «логических» и «физических» законов, объективности последних по сей день относятся к наиболее актуальным и сложным проблемам исследования

Закон природы это определенный безусловный (часто математически выраженный) закон природного явления, который вершится при знакомых условиях всегда и везде с одинаковой необходимостью. Такое представление о законе природы сложилось в XVII-XVIII вв. как результат прогресса точных наук на стадии развития классической науки.

Универсальность закона обозначает, что он распространяется на все объекты своей области, воздействует в любое время и в любой точке пространства. Необходимость как свойство научного закона обусловливается не строением мышления, а организацией реального мира, хотя зависит так же от иерархии утверждений, входящих в научную теорию.

В жизни научного закона, захватывающего обширный круг явлений, можно выделить три характерных этапа:

1) эпоху становления, когда закон функционирует как гипотетическое описательное утверждение и испытывается прежде всего эмпирически;

2) эпоху зрелости, когда закон в полной мере подтвержден эмпирически, приобрел ее системную поддержку и функционирует не только как эмпирическое обобщение, но и как правило оценки других, менее надежных утверждений теории;

3) эпоху старости, когда он входит уже в ядро теории, употребляется, прежде всего, как правило оценки других ее утверждений и может быть оставлен только вместе с самой теорией; проверка такого закона касается прежде всего его эффективности в рамках теории, хотя за ним остается и старая, полученная еще в период его становления эмпирическая поддержка.

На втором и третьем этапах своего бытия научный закон является описательно-оценочным утверждением и проверяется, как все такие утверждения. Например, второй закон движения Ньютона долгое время был фактической истиной.

Понадобились многие столетия настойчивых эмпирических и теоретических исследований, чтобы дать ему строгую формулировку. Сейчас научный закон природы выступает в рамках классической механики Ньютона как аналитически истинное утверждение, которое не может быть опровергнуто никакими наблюдениями.

Истолкование явлений окружающей нас природы и социальной жизни составляет одну из важнейших задач естествознания и общественных наук. Задолго до возникновения науки люди пытались так или иначе объяснить окружающий их мир, а также собственные психические особенности и переживания. Однако такие объяснения, как правило, оказывались неудовлетворительными, поскольку часто базировались либо на одушевлении сил природы, либо на вере в сверхъестественные силы, бога, судьбу и т. п. Поэтому они, в лучшем случае, могли удовлетворить психологическую потребность человека в поисках какого-либо ответа на мучившие его вопросы, но вовсе не давали истинного представления о мире.

Истинные объяснения, которые следует назвать по-настоящему научными, возникли вместе с появлением самой науки. И это вполне понятно, так как научные объяснения основываются на точно сформулированных законах, понятиях и теории, которые отсутствуют в повседневном познании. Поэтому адекватность и глубина объяснения окружающих нас явлений и событий во многом определяется степенью проникновения науки в объективные закономерности, управляющие этими явлениями и событиями. В свою очередь сами законы могут быть по-настоящему поняты только в рамках соответствующей научной теории, хотя они и служат тем концептуальным ядром, вокруг которого строится теория.

Не стоит, конечно, отрицать возможности и полезности объяснения некоторых повседневных явлений на основе эмпирического обобщения наблюдаемых фактов.

Такие объяснения также причисляют к числу реальных, но ими ограничиваются лишь в обыденном, стихийно-эмпирическом познании, в рассуждениях, основанных на так называемом здравом смысле. В науке же не только простые обобщения, но и эмпирические законы пытаются объяснить с помощью совершенных теоретических законов. Хотя реальные объяснения могут быть весьма многообразными по своей глубине или силе, тем не менее все они должны удовлетворять двум важнейшим требованиям.

Во-первых, всякое истинное истолкование должно основываться с таким расчетом, чтобы его доводы, аргументация и специфические характеристики имели прямое взаимоотношение к тем предметам, явлениям и событиям, которые они разъясняют. Исполнение этого запроса представляет нужную предпосылку для того, чтобы считать пояснение адекватным, но одного этого обстоятельства мало для верности истолкования.

Во-вторых, всякое растолкование должно допускать принципиальную проверяемость. Этот запрос обладает крайне важным смыслом в естествознании и опытных науках, так как дает возможность для сортирования истинно научных пояснений от всякого рода чисто спекулятивных и натурфилософских построений, также претендующих на объяснение реальных явлений. Принципиальная проверяемость объяснения вовсе не исключает применения в качестве аргументов таких теоретических принципов, постулатов и законов, которые нельзя проверить непосредственно эмпирически.

Нужно только, чтобы разъяснение доставляло потенциал для выведения отдельных результатов, которые допускают опытное испытание.

На основе знания закона вероятно достоверное предвидение течения процесса. "Познать закон" это значит раскрыть ту или иную сторону сущности исследуемого предмета, явления. Познание законов организации является основной задачей теории организации. Применительно к организации закон - это нужная, значительная и постоянная связь между элементами внутренней и внешней среды, обусловливающая их упорядоченное изменение.

Понятие закона близко к понятию закономерности, которая может рассматриваться как некоторое "расширение закона" или "совокупность взаимосвязанных по содержанию законов, обеспечивающих стабильную тенденцию или устремленность изменений системы".

Законы отличаются по степени общности и сфере действия. Всеобщие законы обнаруживают взаимосвязь между наиболее универсальными свойствами и явлениями природы, общества и человеческого мышления.

Научный закон -- формулировка объективной связи явлений и называется научным потому, что эта объективная связь познана наукой и может быть употреблена в интересах развития общества.

Научный закон формулирует постоянную, повторяющуюся и необходимую связь между явлениями и, следовательно, речь идет не о простом совпадении двух рядов явлений, не о случайно обнаруженных связях, а о такой причинно-следственной их взаимозависимости, когда одна группа явлений неизбежным образом порождает другую, являясь их причиной.

Диалектика: принципы, законы, категории

Наиболее общими законами диалектики являются: переход количественных изменений в качественные, единство и борьба противоположностей, отрицание отрицания. В своем происхождении, историческом развитии и соотношении...

Диалектический анализ понятия "любовь"

1. Закон единства и борьбы противоположностей. Существует взаимная и неразделенная любовь. Они одновременно находятся в единстве и борьбе. Но каждая из них проходит свое саморазвитие и все-таки, я думаю, что они взаимодополняют друг друга...

Законы диалектики

Основными являются три закона диалектики: это 1. Закон единства и борьбы противоположностей. (Закон диалектической противоречивости)...

История философии

Диалектика. Понятие диалектики. Объективная и субъективная диалектика. Структура, законы, функции диалектики: Диалектика - признанная в современной философии теория развития всего сущего и основанный на ней философский метод...

Логика Аристотеля

Суждение и отрицание Аристотель рассматривает, так же как и суждение в отдельности, т.е. онтологически. Поэтому каждому утверждению соответствует одно отрицание и наоборот...

Логика как наука

Ключевые слова: форма мысли, логический закон, логическое следование. Основные формы логического мышления. Логической формой мысли называется строение этой мысли с точки зрения способа соединения ее составных частей...

Логика. Суждение. Умозаключение

Логика - это наука об общезначимых формах и средствах мысли, необходимых для рационального познания в любой области. Следовательно, предмет логики составляют: 1. Законы, которым подчиняется мышление в процессе познания объективного мира. 2...

Научное познание

Наука - это вид познавательной деятельности человека, направленный на получение и выработку объективных, обоснованных и системно организованных знаний об окружающем мире. В ходе этой деятельности происходит сбор фактов, их анализ...

Основные законы диалектики

3.1 Закон единства и борьбы противоположностей (закон противоречия) «Движение и развитие в природе...

Основные законы логики

В логике можно выделить четыре основных закона, которые выражают свойства логического мышления - определенность, непротиворечивость, последовательность, обоснованность. К данным законам относятся: закон тождества, непротиворечия...

Основные логические законы

Среди множества логических законов логика выделяет четыре основных, выражающих коренные свойства логического мышления -- его определенность, непротиворечивость, последовательность и обоснованность. Это законы тождества, непротиворечия...

Законы общества, как и законы природы, существуют независимо от того, знаем ли мы об их существовании или нет. Они всегда носят объективный характер. Объективное - это не только то, что находится вне сознания, но и то...

Введение

В данной работе приведены основные признаки научного закона, а так же главные пути его формирования и становления как основы научной теории.

Особое внимание уделено изучению свойств научного закона как философского понятия. По литературным данным подробно изучены виды и типы научных законов, а так же приведены факторы, определяющие формирование научных законов.

Целью настоящей работы было определить принципиальные характеристики научного закона, как основной категории в познании, а так же определить степень его участия в современном научном исследовании.

Объектами изучения является научный закон, а так же процессы, принимающие активное участие в его формировании.

Понятие научного закона: законы природы и законы науки

Научное знание выступает как сложно организованная система, которая объединяет всевозможные формы организации научной информации: научные понятия и научные факты, законы, цели, принципы, концепции, проблемы, гипотезы, научные программы и т. д.

Научное познание это непрерывный процесс, т.е. единая развивающаяся система сравнительно сложной структуры, которая формулирует единство стабильных взаимосвязей между элементами данной системы. Структура научного познания может быть изображена в разнообразных срезах и следовательно в совокупности своих специфичных элементов.

Центральным звеном научного знания является теория. В современной методологии науки выделяют следующие основные элементы теории.

1. Исходные начала - фундаментальные понятия, принципы, законы, уравнения, аксиомы и т. п.

2. Идеализированные объекты - абстрактные модели существенных свойств и связей изучаемых предметов (например, «абсолютное черное тело», «идеальный газ» и т. п.).

3. Логика теории - совокупность установленных правил и способов доказательства, нацеленных на прояснение структуры и изменения знания.

4. Философские установки и ценностные факторы.

5. Совокупность законов и утверждений, выведенных в качестве следствий из основных положений данной теории в соответствии с конкретными принципами.

Научный закон это форма упорядочивания научного знания, заключающаяся в формулировке общих утверждений о свойствах и взаимоотношениях изучаемой предметной области. Научные законы представляют собой внутреннюю, существенную и устойчивую связь явлений, обуславливающую их упорядоченное изменение.

Понятие научного закона стало формироваться в XVI-XVII вв. в период создания науки в современном смысле этого слова. Долгое время считалось, что данное понятие универсально и распространяется на все области познания: каждая наука призвана определять законы и на их основе обрисовывать и разъяснять изучаемые явления. О законах истории говорили, в частности, О. Конт, К. Маркс, Дж.С. Милль, Г. Спенсер. В конце IXX века В. Виндельбанд и Г. Риккерт выдвигали идею о том, что наряду с генерализирующими науками, имеющими своей задачей открытие научного закона, имеются индивидуализирующие науки, не формулирующие никаких своих законов, а представляющие исследуемые объекты в их уникальности и неповторимости.

Основными чертами научных законов являются:

Необходимость,

Всеобщность,

Повторяемость,

Инвариантность.

В научном познании закон представляется как выражение необходимого и общего отношения между отмечаемыми явлениями, например, между заряженными частицами любой природы (закон Кулона) или любыми телами, обладающими массой (закон тяготения) в физике. В разнообразных течениях современной философии науки понятие закона сопоставляют с понятиями (категориями) сущности, формы, цели, отношения, структуры. Как показали дискуссии в философии науки XX в., входящие в определение закона свойства необходимости и общности (в пределе - всеобщности), а также соотношения классов «логических» и «физических» законов, объективности последних по сей день относятся к наиболее актуальным и сложным проблемам исследования

Закон природы это определенный безусловный (часто математически выраженный) закон природного явления, который вершится при знакомых условиях всегда и везде с одинаковой необходимостью. Такое представление о законе природы сложилось в XVII-XVIII вв. как результат прогресса точных наук на стадии развития классической науки.

Универсальность закона обозначает, что он распространяется на все объекты своей области, воздействует в любое время и в любой точке пространства. Необходимость как свойство научного закона обусловливается не строением мышления, а организацией реального мира, хотя зависит так же от иерархии утверждений, входящих в научную теорию.

В жизни научного закона, захватывающего обширный круг явлений, можно выделить три характерных этапа:

1) эпоху становления, когда закон функционирует как гипотетическое описательное утверждение и испытывается прежде всего эмпирически;

2) эпоху зрелости, когда закон в полной мере подтвержден эмпирически, приобрел ее системную поддержку и функционирует не только как эмпирическое обобщение, но и как правило оценки других, менее надежных утверждений теории;

3) эпоху старости, когда он входит уже в ядро теории, употребляется, прежде всего, как правило оценки других ее утверждений и может быть оставлен только вместе с самой теорией; проверка такого закона касается прежде всего его эффективности в рамках теории, хотя за ним остается и старая, полученная еще в период его становления эмпирическая поддержка.

На втором и третьем этапах своего бытия научный закон является описательно-оценочным утверждением и проверяется, как все такие утверждения. Например, второй закон движения Ньютона долгое время был фактической истиной.

Понадобились многие столетия настойчивых эмпирических и теоретических исследований, чтобы дать ему строгую формулировку. Сейчас научный закон природы выступает в рамках классической механики Ньютона как аналитически истинное утверждение, которое не может быть опровергнуто никакими наблюдениями.

Истолкование явлений окружающей нас природы и социальной жизни составляет одну из важнейших задач естествознания и общественных наук. Задолго до возникновения науки люди пытались так или иначе объяснить окружающий их мир, а также собственные психические особенности и переживания. Однако такие объяснения, как правило, оказывались неудовлетворительными, поскольку часто базировались либо на одушевлении сил природы, либо на вере в сверхъестественные силы, бога, судьбу и т. п. Поэтому они, в лучшем случае, могли удовлетворить психологическую потребность человека в поисках какого-либо ответа на мучившие его вопросы, но вовсе не давали истинного представления о мире.

Истинные объяснения, которые следует назвать по-настоящему научными, возникли вместе с появлением самой науки. И это вполне понятно, так как научные объяснения основываются на точно сформулированных законах, понятиях и теории, которые отсутствуют в повседневном познании. Поэтому адекватность и глубина объяснения окружающих нас явлений и событий во многом определяется степенью проникновения науки в объективные закономерности, управляющие этими явлениями и событиями. В свою очередь сами законы могут быть по-настоящему поняты только в рамках соответствующей научной теории, хотя они и служат тем концептуальным ядром, вокруг которого строится теория.

Не стоит, конечно, отрицать возможности и полезности объяснения некоторых повседневных явлений на основе эмпирического обобщения наблюдаемых фактов.

Такие объяснения также причисляют к числу реальных, но ими ограничиваются лишь в обыденном, стихийно-эмпирическом познании, в рассуждениях, основанных на так называемом здравом смысле. В науке же не только простые обобщения, но и эмпирические законы пытаются объяснить с помощью совершенных теоретических законов. Хотя реальные объяснения могут быть весьма многообразными по своей глубине или силе, тем не менее все они должны удовлетворять двум важнейшим требованиям.

Во-первых, всякое истинное истолкование должно основываться с таким расчетом, чтобы его доводы, аргументация и специфические характеристики имели прямое взаимоотношение к тем предметам, явлениям и событиям, которые они разъясняют. Исполнение этого запроса представляет нужную предпосылку для того, чтобы считать пояснение адекватным, но одного этого обстоятельства мало для верности истолкования.

Во-вторых, всякое растолкование должно допускать принципиальную проверяемость. Этот запрос обладает крайне важным смыслом в естествознании и опытных науках, так как дает возможность для сортирования истинно научных пояснений от всякого рода чисто спекулятивных и натурфилософских построений, также претендующих на объяснение реальных явлений. Принципиальная проверяемость объяснения вовсе не исключает применения в качестве аргументов таких теоретических принципов, постулатов и законов, которые нельзя проверить непосредственно эмпирически.

Нужно только, чтобы разъяснение доставляло потенциал для выведения отдельных результатов, которые допускают опытное испытание.

На основе знания закона вероятно достоверное предвидение течения процесса. "Познать закон" это значит раскрыть ту или иную сторону сущности исследуемого предмета, явления. Познание законов организации является основной задачей теории организации. Применительно к организации закон - это нужная, значительная и постоянная связь между элементами внутренней и внешней среды, обусловливающая их упорядоченное изменение.

Понятие закона близко к понятию закономерности, которая может рассматриваться как некоторое "расширение закона" или "совокупность взаимосвязанных по содержанию законов, обеспечивающих стабильную тенденцию или устремленность изменений системы".

Законы отличаются по степени общности и сфере действия. Всеобщие законы обнаруживают взаимосвязь между наиболее универсальными свойствами и явлениями природы, общества и человеческого мышления.

Научный закон -- формулировка объективной связи явлений и называется научным потому, что эта объективная связь познана наукой и может быть употреблена в интересах развития общества.

Научный закон формулирует постоянную, повторяющуюся и необходимую связь между явлениями и, следовательно, речь идет не о простом совпадении двух рядов явлений, не о случайно обнаруженных связях, а о такой причинно-следственной их взаимозависимости, когда одна группа явлений неизбежным образом порождает другую, являясь их причиной.

Ученые с планеты Земля используют массу инструментов, пытаясь описать то, как работает природа и вселенная в целом. Что они приходят к законам и теориям. В чем разница? Научный закон можно зачастую свести к математическому утверждению, вроде E = mc²; это утверждение базируется на эмпирических данных и его истинность, как правило, ограничивается определенным набором условий. В случае E = mc² - скорость света в вакууме.

Научная теория зачастую стремится синтезировать ряд фактов или наблюдений за конкретными явлениями. И в целом (но не всегда) выходит четкое и проверяемое утверждение относительно того, как функционирует природа. Совсем не обязательно сводить научную теорию к уравнению, но она на самом деле представляет собой нечто фундаментальное о работе природы.

Как законы, так и теории зависят от основных элементов научного метода, например, создании гипотез, проведения экспериментов, нахождения (или не нахождения) эмпирических данных и заключение выводов. В конце концов, ученые должны быть в состоянии повторить результаты, если эксперименту суждено стать основой для общепринятного закона или теории.

В этой статье мы рассмотрим десять научных законов и теорий, которые вы можете освежить в памяти, даже если вы, к примеру, не так часто обращаетесь к сканирующему электронному микроскопу. Начнем со взрыва и закончим неопределенностью.

Если и стоит знать хотя бы одну научную теорию, то пусть она объяснит, как вселенная достигла нынешнего своего состояния (или не достигла, ). На основании исследований, проведенных Эдвином Хабблом, Жоржем Леметром и Альбертом Эйнштейном, теория Большого Взрыва постулирует, что Вселенная началась 14 миллиардов лет назад с массивного расширения. В какой-то момент Вселенная была заключена в одной точке и охватывала всю материю нынешней вселенной. Это движение продолжается и по сей день, а сама вселенная постоянно расширяется.

Теория Большого Взрыва получила широкую поддержку в научных кругах после того, как Арно Пензиас и Роберт Уилсон обнаружили космический микроволновый фон в 1965 году. С помощью радиотелескопов два астронома обнаружили космический шум, или статику, которая не рассеивается со временем. В сотрудничестве с принстонским исследователем Робертом Дике, пара ученых подтвердила гипотезу Дике о том, что первоначальный Большой Взрыв оставил после себя излучение низкого уровня, которое можно обнаружить по всей Вселенной.

Закон космического расширения Хаббла

Давайте на секунду задержим Эдвина Хаббла. В то время как в 1920-х годах бушевала Великая депрессия, Хаббл выступал с новаторским астрономическим исследованием. Он не только доказал, что были и другие галактики помимо Млечного Пути, но также обнаружил, что эти галактики несутся прочь от нашей собственной, и это движение он назвал разбеганием.

Для того, чтобы количественно оценить скорость этого галактического движения, Хаббл предложил закон космического расширения, он же закон Хаббла. Уравнение выглядит так: скорость = H0 x расстояние. Скорость представляет собой скорость разбегания галактик; H0 - это постоянная Хаббла, или параметр, который показывает скорость расширения вселенной; расстояние - это расстояние одной галактики до той, с которой происходит сравнение.

Постоянная Хаббла рассчитывалась при разных значениях в течение достаточно долгого времени, однако в настоящее время она замерла на точке 70 км/с на мегапарсек. Для нас это не так важно. Важно то, что закон представляет собой удобный способ измерения скорости галактики относительно нашей собственной. И еще важно то, что закон установил, что Вселенная состоит из многих галактик, движение которых прослеживается до Большого Взрыва.

Законы планетарного движения Кеплера

На протяжении веков ученые сражались друг с другом и с религиозными лидерами за орбиты планет, особенно за то, вращаются ли они вокруг Солнца. В 16 веке Коперник выдвинул свою спорную концепцию гелиоцентрической Солнечной системы, в которой планеты вращаются вокруг Солнца, а не Земли. Однако только с Иоганном Кеплером, который опирался на работы Тихо Браге и других астрономов, появилась четкая научная основа для движения планет.

Три закона планетарного движения Кеплера, сложившиеся в начале 17 века, описывают движение планет вокруг Солнца. Первый закон, который иногда называют законом орбит, утверждает, что планеты вращаются вокруг Солнца по эллиптической орбите. Второй закон, закон площадей, говорит, что линия, соединяющая планету с солнцем, образует равные площади через равные промежутки времени. Другими словами, если вы измеряете площадь, созданную нарисованной линией от Земли от Солнца, и отслеживаете движение Земли на протяжении 30 дней, площадь будет одинаковой, вне зависимости от положения Земли касательно начала отсчета.

Третий закон, закон периодов, позволяет установить четкую взаимосвязь между орбитальным периодом планеты и расстоянием до Солнца. Благодаря этому закону, мы знаем, что планета, которая относительно близка к Солнцу, вроде Венеры, имеет гораздо более краткий орбитальный период, чем далекие планеты, вроде Нептуна.

Универсальный закон тяготения

Сегодня это может быть в порядке вещей, но более чем 300 лет назад сэр Исаак Ньютон предложил революционную идею: два любых объекта, независимо от их массы, оказывают гравитационное притяжение друг на друга. Этот закон представлен уравнением, с которым многие школьники сталкиваются в старших классах физико-математического профиля.

F = G × [(m1m2)/r²]

F - это гравитационная сила между двумя объектами, измеряемая в ньютонах. M1 и M2 - это массы двух объектов, в то время как r - это расстояние между ними. G - это гравитационная постоянная, в настоящее время рассчитанная как 6,67384(80)·10 −11 или Н·м²·кг −2 .

Преимущество универсального закона тяготения в том, что он позволяет вычислить гравитационное притяжение между двумя любыми объектами. Эта способность крайне полезна, когда ученые, например, запускают спутник на орбиту или определяют курс Луны.

Законы Ньютона

Раз уж мы заговорили об одном из величайших ученых, когда-либо живущих на Земле, давайте поговорим о других знаменитых законах Ньютона. Его три закона движения составляют существенную часть современной физики. И как и многие другие законы физики, они элегантны в своей простоте.

Первый из трех законов утверждает, что объект в движении остается в движении, если на него не действует внешняя сила. Для шарика, который катится по полу, внешней силой может быть трение между шаром и полом, или же мальчик, который бьет по шарику в другом направлении.

Второй закон устанавливает связь между массой объекта (m) и его ускорением (a) в виде уравнения F = m x a. F представляет собой силу, измеряемую в ньютонах. Также это вектор, то есть у него есть направленный компонент. Благодаря ускорению, мяч, который катится по полу, обладает особым вектором в направлении его движения, и это учитывается при расчете силы.

Третий закон довольно содержательный и должен быть вам знаком: для каждого действия есть равное противодействие. То есть для каждой силы, приложенной к объекту на поверхности, объект отталкивается с такой же силой.

Законы термодинамики

Британский физик и писатель Ч. П. Сноу однажды сказал, что неученый, который не знал второго закона термодинамики, был как ученый, который никогда не читал Шекспира. Нынче известное заявление Сноу подчеркивало важность термодинамики и необходимость даже людям, далеким от науки, знать его.

Термодинамика - это наука о том, как энергия работает в системе, будь то двигатель или ядро Земли. Ее можно свести к нескольким базовым законам, которые Сноу обозначил следующим образом:

  • Вы не можете выиграть.
  • Вы не избежите убытков.
  • Вы не можете выйти из игры.

Давайте немного разберемся с этим. Говоря, что вы не можете выиграть, Сноу имел в виду то, что поскольку материя и энергия сохраняются, вы не можете получить одно, не потеряв второе (то есть E=mc²). Также это означает, что для работы двигателя вам нужно поставлять тепло, однако в отсутствии идеально замкнутой системы некоторое количество тепла неизбежно будет уходить в открытый мир, что приведет ко второму закону.

Второй закон - убытки неизбежны - означает, что в связи с возрастающей энтропией, вы не можете вернуться к прежнему энергетическому состоянию. Энергия, сконцентрированная в одном месте, всегда будет стремиться к местам более низкой концентрации.

Наконец, третий закон - вы не можете выйти из игры - относится , самой низкой теоретически возможной температуре - минус 273,15 градуса Цельсия. Когда система достигает абсолютного нуля, движение молекул останавливается, а значит энтропия достигнет самого низкого значения и не будет даже кинетической энергии. Но в реальном мире достичь абсолютного нуля невозможно - только очень близко к нему подойти.

Сила Архимеда

После того как древний грек Архимед открыл свой принцип плавучести, он якобы крикнул «Эврика!» (Нашел!) и побежал голышом по Сиракузам. Так гласит легенда. Открытие было вот настолько важным. Также легенда гласит, что Архимед обнаружил принцип, когда заметил, что вода в ванной поднимается при погружении в него тела.

Согласно принципу плавучести Архимеда, сила, действующая на погруженный или частично погруженный объект, равна массе жидкости, которую смещает объект. Этот принцип имеет важнейшее значение в расчетах плотности, а также проектировании подлодок и других океанических судов.

Эвoлюция и естественный отбор

Теперь, когда мы установили некоторые из основных понятий о том, с чего началась Вселенная и как физические законы влияют на нашу повседневную жизнь, давайте обратим внимание на человеческую форму и выясним, как мы дошли до такого. По мнению большинства ученых, вся жизнь на Земле имеет общего предка. Но для того, чтобы образовалась такая огромная разница между всеми живыми организмами, некоторые из них должны были превратиться в отдельный вид.

В общем смысле, эта дифференциация произошла в процессе эволюции. Популяции организмов и их черты прошли через такие механизмы, как мутации. Те, у кого черты были более выгодными для выживания, вроде коричневых лягушек, которые отлично маскируются в болоте, были естественным образом избраны для выживания. Вот откуда взял начало термин естественный отбор.

Можно умножить две этих теории на много-много времени, и собственно это сделал Дарвин в 19 веке. Эволюция и естественный отбор объясняют огромное разнообразие жизни на Земле.

Общая теория относительности

Альберта Эйнштейна была и остается важнейшим открытием, которое навсегда изменила наш взгляд на вселенную. Главным прорывом Эйнштейна было заявление о том, что пространство и время не являются абсолютными, а гравитация - это не просто сила, приложенная к объекту или массе. Скорее гравитация связана с тем, что масса искривляет само пространство и время (пространство-время).

Чтобы осмыслить это, представьте, что вы едете через всю Землю по прямой линии в восточном направлении, скажем, из северного полушария. Через некоторое время, если кто-то захочет точно определить ваше местоположение вы будете гораздо южнее и восточнее своего исходного положения. Это потому что Земля изогнута. Чтобы ехать прямо на восток, вам нужно учитывать форму Земли и ехать под углом немного на север. Сравните круглый шарик и лист бумаги.

Пространство - это в значительной мере то же самое. К примеру, для пассажиров ракеты, летящей вокруг Земли, будет очевидно, что они летят по прямой в пространстве. Но на самом деле, пространство-время вокруг них изгибается под действием силы тяжести Земли, заставляя их одновременно двигаться вперед и оставаться на орбите Земли.

Теория Эйнштейна оказала огромное влияние на будущее астрофизики и космологии. Она объяснила небольшую и неожиданную аномалию орбиты Меркурия, показала, как изгибается свет звезд и заложила теоретические основы для черных дыр.

Принцип неопределенности Гейзенберга

Расширение теории относительности Эйнштейна рассказало нам больше о том, как работает Вселенная, и помогло заложить основу для квантовой физики, что привело к совершенно неожиданному конфузу теоретической науки. В 1927 году осознание того, что все законы вселенной в определенном контексте являются гибкими, привело к ошеломительному открытию немецкого ученого Вернера Гейзенберга.

Постулируя свой принцип неопределенности, Гейзенберг понял, что невозможно одновременно знать с высоким уровнем точности два свойства частицы. Вы можете знать положение электрона с высокой степенью точности, но не его импульс, и наоборот.

Позже Нильс Бор сделал открытие, которое помогло объяснить принцип Гейзенберга. Бор выяснил, что электрон обладает качествами как частицы, так и волны. Концепция стала известна как корпускулярно-волновой дуализм и легла в основу квантовой физики. Поэтому, когда мы измеряем положение электрона, мы определяем его как частицу в определенной точке пространства с неопределенной длиной волны. Когда мы измеряем импульс, мы рассматриваем электрон как волну, а значит можем знать амплитуду ее длины, но не положение.

Изучение законов действительности находит свое выражение в создании научной теории, адекватно отражающей исследуемую предметную область в целостности ее законов и закономерностей. Поэтому закон – ключевой элемент теории, которая есть не что иное, как система законов, выражающих сущность, глубинные связи изучаемого объекта (а не только эмпирические зависимости) во всей его целостности и конкретности, как единство многообразного.

В самом общем виде закон можно определить как связь между явлениями, процессами, которая является:

а) объективной , т.к. присуща прежде всего реальному миру, чувственно-предметной деятельности людей, выражает реальные отношения вещей;

б) существенной , конкретно-всеобщей. Любой закон присущ всем без исключения процессам данного класса, определенного типа и действует всегда и везде, где развертываются соответствующие процессы и условия;

в) необходимой , т.к. будучи тесно связан с сущностью, закон действует и осуществляется с «железной необходимостью» в соответствующих условиях;

г) внутренней , т.к. отражает самые глубинные связи и зависимости данной предметной области в единстве всех ее моментов и отношений в рамках некоторой целостной системы;

д) повторяющейся, устойчивой , т.к. закон есть выражение некоторого постоянства определенного процесса, регулярности его протекания, одинаковости его действия в сходных условиях.

Стабильность, инвариантность законов всегда соотносится с конкретными условиями их действия, изменение которых снимает данную инвариантность и порождает новую, что и означает изменение законов, их углубление, расширение или сужение сферы их действия, их модификации и т.п. Любой закон не есть нечто неизменное, а представляет собой конкретно-исторический феномен. С изменением соответствующих условий, с развитием практики и познания одни законы сходят со сцены, другие вновь появляются, меняются формы действия законов, способы их использования и т. д.

Важнейшая, ключевая задача научного исследования – «поднять опыт до всеобщего», найти законы данной предметной области, определенной сферы (фрагмента) реальной действительности, выразить их в соответствующих понятиях, абстракциях, теориях, идеях, принципах и т.п. Решение этой задачи может быть успешным в том случае, если ученый будет исходить из двух основных посылок: реальности мира в его целостности и развитии и законосообразности этого мира, т.е. того, что он «пронизан» совокупностью объективных законов. Последние регулируют весь мировой процесс, обеспечивают в нем определенный порядок, необходимость, принцип самодвижения и вполне познаваемы.

Надо иметь в виду, что мышление людей и объективный мир подчинены одним и тем же законам и что поэтому они в своих результатах должны согласовываться между собой. Необходимое соответствие между законами объективной действительности и законами мышления достигается тогда, когда они надлежащим образом познаны.


Познание законов – сложный, трудный и глубоко противоречивый процесс отражения действительности. Познающий субъект не может отобразить весь реальный мир, полностью и целиком. Он может лишь вечно приближаться к этому, создавая различные понятия и другие абстракции, формулируя те или иные законы, применяя целый ряд приемов и методов в их совокупности (эксперимент, наблюдение, идеализация, моделирование и т.п.).

В. Гейзенберг, полагал, что открытие законов – важнейшая задача науки.

Законы открываются сначала в форме предположении, гипотез Дальнейший опытный материал, новые факты приводят к «очищению этих гипотез», устраняют одни из них, исправляют другие, пока, наконец, не будет установлен в чистом виде закон.

Поскольку законы относятся к сфере сущности, то самые глубокие знания о них достигаются не на уровне непосредственного восприятия, а на этапе теоретического исследования. Именно здесь и происходит в конечном счете сведение случайного, видимого лишь в явлениях, к действительному внутреннему движению Результатом этого процесса является открытие закона, точнее совокупности законов, присущих данной сфере, которые в своей взаимосвязи образуют «ядро» определенной научной теории.

Раскрывая механизм открытия новых законов, Р. Фейнман отмечал, что «поиск нового закона ведется следующим образом. Прежде всего о нем догадываются. Затем вычисляют следствия этой догадки и выясняют, что повлечет за собой этот закон, если окажется, что он справедлив. Затем результаты расчетов сравнивают с тем, что наблюдается в природе, с результатами специальных экспериментов или с нашим опытом, и по результатам таких наблюдений выясняют, так это или не так. Если расчеты расходятся с экспериментальными данными, то закон неправилен». При этом Фейнман обращает внимание на то, что на всех этапах движения познания важную роль играют философские установки, которыми руководствуется исследователь. Уже в начале пути к закону имение философия помогает строить догадки, здесь трудно сделать окончательный выбор.

Открытие и формулирование закона – важнейшая, но не последняя задача науки , которая еще должна показать, как открытый ею закон прокладывает себе путь. Для этого надо с помощью закона, опираясь на него, объяснить все явления данной предметной области (даже те, которые кажутся ему противоречащими), вывести их все из соответствующего закона через целый ряд посредствующих звеньев.

Следует иметь в виду, что каждый конкретный закон практически никогда не проявляется в «чистом виде», а всегда во взаимосвязи с другими законами разных уровней и порядков. Кроме того, нельзя забывать, что хотя объективные законы действуют с «железной необходимостью», сами по себе они отнюдь не «железные», а очень даже «мягкие», эластичные в том смысле, что в зависимости от конкретных условий получает перевес то тот, то другой закон. Эластичность законов (особенно общественных) проявляется также в том, что они зачастую действуют как законы-тенденции, осуществляются весьма запутанным и приблизительным образом, как некоторая никогда твердо, не устанавливающаяся средняя постоянных колебаний.

Условия, в которых осуществляется каждый данный закон, могут стимулировать и углублять, или наоборот «пресекать» и снимать его действие. Тем самым любой закон в своей реализации всегда модифицируется конкретно-историческими обстоятельствами, которые либо позволяют закону набрать полную силу, либо замедляют, ослабляют его действие, выражая закон в виде пробивающейся тенденции. Кроме того, действие того или иного закона неизбежно видоизменяется сопутствующим действием других законов.

Каждый закон «узок, неполон, приблизителен» (Гегель), поскольку имеет границы своего действия, определенную сферу своего осуществления (например, рамки данной формы движения материи, конкретная ступень развития и т. д.). Как бы вторя Гегелю, Р. Фейнман отмечал, что даже закон всемирного тяготения не точен – «то же относится и к другим нашим законам – они не точны. Где-то на краю их всегда лежит тайна, всегда есть, над чем поломать голову». На основе законов осуществляется не только объяснение явлений данного класса (группы), но и предсказание, предвидение новых явлений, событий, процессов и т.п., возможных путей, форм и тенденций познавательной и практической деятельности людей.

Открытые законы, познанные закономерности могут при их умелом и правильном применении быть использованы людьми для того, чтобы они могли изменять природу и свои собственные общественные отношения. Поскольку законы внешнего мира – основы целесообразной деятельности человека, то люди должны сознательно руководствоваться требованиями, вытекающими из объективных законов. Иначе последняя не станет эффективной и результативной, а будет осуществляться в лучшем случае методом проб и ошибок. На основе познанных законов люди могут действительно научно управлять как природными, так и социальными процессами, оптимально их регулировать. Опираясь в своей деятельности на «царство законов», человек вместе с тем может в определенной мере оказывать влияние на механизм реализации того или иного закона. Он может способствовать его действию в более чистом виде, создавать условия для развития закона до его качественной полноты, либо же, напротив, сдерживать это действие, локализовать его или даже трансформировать.

Многообразие видов отношений и взаимодействий в реальной действительности служит объективной основой существования многих форм законов, которые классифицируются по тому или иному критерию. По формам движения материи можно выделить законы: механические, физические, химические, биологические, социальные (общественные); по основным сферам действительности – законы природы, общества, мышления; по степени их общности, точнее – по широте сферы и действия – всеобщие (диалектические, общие (особенные), частные (специфические); по механизму детерминации – динамические и статистические, причинные и непричинные; по их значимости и роли – основные и не основные; по глубине фундаментальности – эмпирические и теоретические и т. д.

Односторонние (ошибочные) трактовки закона могут быть выражены в следующем:

1. Понятие закона абсолютизируется, упрощается. Здесь упускается из виду то обстоятельство, что данное понятие – безусловно важное самое по себе – есть лишь одна из ступеней познания человеком единства, взаимозависимости и цельности мирового процесса. Закон – лишь одна из форм отражения реальной действительности в познании, одна из граней, моментов научной картины мира во взаимосвязи с другими (причина, противоречие и др.).

2. Игнорируется объективный характер законов, их материальный источник. Не реальная действительность должна сообразовываться с принципами и законами, а наоборот, последние верны лишь постольку, поскольку они соответствуют объективному миру.

3. Отрицается возможность использования людьми системы объективных законов как основы их деятельности в многообразных ее формах прежде всего в чувственно-предметной. Однако игнорирование требований объективных законов все равно рано или поздно дает о себе знать, «мстит за себя» (например, предкризисные и кризисные явления в обществе).

4. Закон понимается как нечто вечное, неизменное, абсолютное, не зависящее в своем действии от совокупности конкретных обстоятельств и фатально предопределяющее ход событий и процессов. Между тем развитие науки свидетельствует о том, что «нет ни одного закона, о котором мы смогли бы с уверенностью сказать, что в прошлом он был верен с той же степенью приближения, что и сейчас... Своим разжалованием всякий закон обязан воцарению нового закона, таким образом, не может наступить междуцарствие».

5. Игнорируется качественное многообразие законов, их несводимость друг к другу и их взаимодействие, дающее своеобразный результат в каждом конкретном случае.

6. Отвергается то обстоятельство, что объективные законы нельзя создать или отменить. Их можно лишь открыть в процессе познания реального мира и, изменяя условия их действия, изменять механизм последнего.

7. Абсолютизируются законы более низших форм движения материи, делаются попытки только ими объяснить процессы в рамках более высоких форм движения материи (механицизм, физикализм, редукционизм и т.п.).

8. Нарушаются границы, в пределах которых те или иные законы имеют силу, их сфера действия неправомерно расширяется или, наоборот, сужается. Например, законы механики пытаются перенести на другие формы движения и только ими объяснять их своеобразие. Однако в более высоких формах движения механические законы, хотя и продолжают действовать, но отступают на задний план перед другими, более высокими законами, которые содержат их в себе в «снятом» виде и только к ним не сводятся.

9. Законы науки толкуются не как отражение законов объективного мира, а как результат соглашения научного сообщества, имеющего, стало быть, конвенциональный характер.

10. Игнорируется то обстоятельство, что объективные законы в действительности, модифицируясь многочисленными обстоятельствами, осуществляются всегда в особой форме через систему посредствующих звеньев. Нахождение последних – единственно научный способ разрешения противоречия между общим законом и более развитыми конкретными отношениями. Иначе «эмпирическое бытие» закона в его специфической форме выдается за закон как таковой в его «чистом виде».

Специфика эмпирической гипотезы, как мы выяснили, состоит в том, что она является вероятностным знанием, носит описательный характер, то есть содержит предположение о том, как ведет себя объект, но не объясняет почему. Пример: чем сильнее трение, тем большее количество тепла выделяется; металлы расширяются при нагревании.

Эмпирический закон – это уже наиболее развитая форма вероятностного эмпирического знания, с помощью индуктивных методов фиксирующего количественные и иные зависимости, полученные опытным путем, при сопоставлении фактов наблюдения и эксперимента. В этом его отличие как формы знания от теоретического закона – достоверного знания, которое формулируется с помощью математических абстракций, а также в результате теоретических рассуждений, главным образом как следствие мысленного эксперимента над идеализированными объектами.

Закон – необходимое, устойчивое, повторяющееся отношение между процессами и явлениями в природе и обществе. Важнейшая задача научного исследования – поднять опыт до всеобщего, найти законы данной предметной области, выразить их в понятиях, теориях. Решение данной задачи возможно, если ученый исходит из двух посылок:

Признание реальности мира в его целостности и развитии,

Признание законосообразности мира, того, что он пронизан совокупностью объективных законов.

Главная функция науки, научного познания – открытие законов изучаемой области действительности. Без установления законов, без выражения их в системе понятий нет науки, и не может быть научной теории.

Закон – ключевой элемент теории, выражающий сущность, глубинные связи изучаемого объекта во всей его целостности и конкретности как единство многообразного. Закон определяется как связь (отношение) между явлениями, процессами, которая является:

Объективной, поскольку присуща реальному миру,

Существенной, будучи отражением соответствующих процессов,

Внутренней, отражающей самые глубинные связи и зависимости предметной области в единстве всех ее моментов,

Повторяющейся, устойчивой как выражение постоянства определенного процесса, одинаковости его действия в сходных условиях.

С изменением условий, развитием практики и познания одни законы сходят со сцены, другие появляются, меняются формы действия законов. Познающий субъект не может отобразить весь мир целиком, он может лишь приближаться к этому, формулируя те или иные законы. Каждый закон узок, неполон, писал еще Гегель. Однако без них наука остановилась бы.

Законы классифицируются по формам движения материи, по основным сферам действительности, по степени общности, по механизму детерминации, по их значимости и роли, они бывают эмпирические и теоретические.


Законы трактуются односторонне, когда:

Понятие закона абсолютизируется,

Когда игнорируется объективный характер законов, их материальный источник,

Когда они рассматриваются не системно,

Закон понимается как нечто неизменное,

Нарушаются границы, в пределах которых те или иные законы имеют силу,

Научный закон – универсальное, необходимое утверждение о связи явлений. Общая форма научного закона такова: для всякого объекта из исследуемой области явлений верно, что если он обладает свойством А, то он с необходимостью имеет также свойство В.

Универсальность закона означает, что он распространяется на все объекты своей области, действуя во всякое время и в любой точке пространства. Необходимость, присущая научному закону, является не логической, а онтологической. Она определяется не структурой мышления, а устройством самого реального мира, хотя зависит также от иерархии утверждений, входящих в научную теорию. (Ивин А.А. Основы социальной философии, с. 412 – 416).

Научными законами являются, например, следующие утверждения:

Если по проводнику течет ток, вокруг проводника образуется магнитное поле;

Если в стране нет развитого гражданского общества, в ней нет устойчивой демократии.

Научные законы делятся на:

Динамические законы, или закономерности жестко детерминации, которые фиксируют однозначные связи и зависимости;

Статистические законы, в формулировке которых решающую роль играют методы теории вероятностей.

Научные законы, относящиеся к широким областям явлений, имеют отчетливо выраженный двойственный, дескритивно-прескриптивный характер, они описывают и объясняют некоторую совокупность фактов. В качестве описаний они должны соответствовать эмпирическим данным и эмпирическим обобщениям. Вместе с тем такие научные законы являются также стандартами оценки, как других утверждений теории, так и самих фактов.

Если роль ценностной составляющей в научных законах преувеличивается, они становятся лишь средством для упорядочения результатов наблюдения и вопрос об их соответствии действительности (их истинности) оказывается некорректным. А если абсолютизируется момент описания, научные законы предстают как прямое единственно возможное отображение фундаментальных характеристик бытия.

Одна из главных функций научного закона – это объяснение того, почему имеет место то или иное явление. Делается это путем логического выведения данного явления их некоторого общего положения и утверждения о так называемых начальных условиях. Такого рода объяснение принято называть номологическим, или объяснением через охватывающий закон. Объяснение может опираться не только на научный закон, но и на случайное общее положение, а также на утверждение о каузальной связи. Объяснение через научный закон имеет преимущество, оно придает явлению необходимый характер.

Понятие научного закона возникает в 16 – 17 веках, в период формирования науки. Наука существует там, где присутствуют закономерности, которые можно изучать и предсказывать. Таков пример небесной механики, такова большая часть социальных явлений, в особенности экономических. Однако в политических, исторических науках, лингвистике имеет место объяснение, основанное не на научном законе, а каузальное объяснение или понимание, опирающееся не на описательные, а на оценочные утверждения.

Формулируют научные законы те науки, которые используют в качестве своей системы координат сравнительные категории. Не устанавливают научных законов науки, в основании которых лежит система абсолютных категорий.

Научные законы

Закон – это теоретическое умозаключение, отражающее устойчивую повторяемость тех или иных явлений. При утверждении закона мы как бы произвольно отделяем некоторую доступную нам часть множества, досконально изучаем ее и делаем на основании этого какие-то общие выводы. Получается, что наши выводы основаны на недостаточной информации. Однако у человека есть интуиция и способность к абстрактному мышлению. Так возникли первые законообразные заключения, приписываемые Гермесу Трисмегисту: то, что находится внизу, соответствует тому, что пребывает вверху; и то, что пребывает вверху, соответствует тому, что пребывает внизу, чтобы творить чудеса единой вещи. Подобие в представлении древних мыслителей касалось не только внешней фактуры, но и внутреннего, глубинного содержания вещей и понятий. В этом смысле устанавливаемое нами разделение имеется только на поверхностном или физическом слое, тогда как аналогия как форма ассоциативной связи, напротив, объединяет сущее, но уже с многомерных позиций. Более того, этот законоподобный принцип утверждает не только структурное подобие, или изоморфизм, но и духовное сродство, которое сегодня все еще находится вне сферы интересов академической науки.

Другим, не менее важным законом, объясняющим взаимодействие системы и элемента, является принцип голографии, открытие которой связано с именами Д.Габора (1948), Д.Бома и К.Прибрама (1975). Последний, занимаясь исследования мозга, пришел к выводу о том, что мозг является большой голограммой, где память содержится не в нейронах и не в группах нейронов, а в нервных импульсах, циркулирующих по всему мозгу, и точно так же, как кусочек голограммы содержит все изображение целиком без существенной потери качества информации. К подобным выводам пришел и физик Х.Зукарелли (2008), которые перенес принцип голографии на область акустических явлений. Многочисленными исследованиями было установлено, что голография присуща всем без исключения структурам и явлениям физического мира.

Дальнейшей разработкой соотношения части и целого является принцип фрактальности, открытый Б.Мальденбротом в 1975 году для обозначения нерегулярных самоподобных множеств: фракталом называется структура, состоящая из частей, которые в каком-то смысле подобны целому. Таким образом, как и в голографии, основным свойством фрактала является самоподобие. Фрактальность присуща всем явлениям природы, а также искусственным, в том числе математическим структурам. При этом если голография говорит о функциональном или информационном подобии, то фрактальность подтверждает то же самое на примере графических и математических образов.

Важнейшее значение для познания окружающего мира является принцип иерархии. Термин «иерархия» (от греч. священный и власть) был введен для характеристики организации христианской церкви. Позже, в 5 веке Дионисий Ареопагит расширяет его толкование применительно к структуре Вселенной. Он не без основания полагал, что физический мир является огрубленным аналогом мира горнего, где также есть уровни или слои, подчиняющиеся общим законам. Термин «иерархия», а также «иерархические уровни» оказался настолько удачным, что впоследствии стал с успехом применяться в социологии, биологии, физиологии, кибернетике, общей теории систем, лингвистике.

Любые системы в их иерархии существуют в полной мере как таковые, только когда они полагаются субъектами всех своих отношений. Во всех других случаях они имеются как объекты со значительно меньшей определенностью. Необходимо иметь в виду, что имеется некоторое предельное число элементов того или иного уровня, уменьшение или увеличение которого ликвидирует уровень как таковой, где действует философский закон перехода количества в качество, являющийся наиболее общей причиной образования иных уровней иерархии.

Ниже мы рассмотрим статистические законы более подробно, здесь же укажем, что Э.Шредингер полагал, что все физические и химические законы, совершающиеся внутри организмов, являются статистическими и проявляются при большом числе взаимодействующих элементов. При уменьшении количества элементов ниже N-го данный закон просто перестает действовать. Однако – заметьте – в этом случае актуализируются другие законы, которые как бы занимают место утраченных. В природе ничего нельзя приобретать, не теряя, и, напротив, всякая потеря сопровождается новыми приобретениями, пишет Шредингер (Шредингер Э. Что такое жизнь? С точки зрения физика. – М.: Атомиздат, 1972. – 96с.). Нарушение статистической достоверности при малом числе элементов приводит к усилению индивидуальной роли каждого из них с соответствующей актуализацией свойственных им самим по себе личностных свойств. В рамках теории катастроф возникло представление о том, что при малом изменении равновесия (в точках бифуркации) могут возникнуть резкие перевороты системного статуса. После выбора одного из вероятных путей, траектории развития, обратного пути уже нет, действует однозначный детерминизм, и развитие системы вновь становится предсказуемым до следующей точки.

В законах науки отображаются регулярные, повторяющиеся связи или отношения между явлениями или процессами реального мира. Вплоть до второй половины 19 века подлинными законами науки считались универсальные утверждения, раскрывающие регулярно повторяющиеся, необходимые и существенные связи между явлениями. Между тем регулярность может носить не универсальный, а экзистенциальный характер, т.е. относиться не ко всему классу, а только к определенной ее части. Отсюда все законы делят на следующие виды:

Универсальные и частные законы;

Детерминистические и стохастические (статистические) законы;

Эмпирические и теоретические законы.

Универсальными принято называть законы, которые отображают всеобщий, необходимый, строго повторяющийся и устойчивый характер регулярной связи между явлениями и процессами объективного мира. Например, это закон теплового расширения физических тел, который на качественном языке может быть выражен с помощью предложения: все тела при нагревании расширяются. Более точно он выражается на количественном языке посредством функционального отношения между температурой и увеличением размеров тела.

Частные, или экзистенциальные законы, представляют собой либо законы, выведенные из универсальных законов, либо законы, отображающие регулярности случайных массовых событий. К числу частный законов можно отнести закон теплового расширения металлов, который является вторичным или производным по отношению к универсальному закону расширения всех физических тел.

Детерминистические и стохастические законы различают по точности их предсказаний. Стохастические законы отображают определенную регулярность, которая возникает в результате взаимодействия случайных массовых или повторяющихся событий, например, бросание игральной кости. Такого рода процессы наблюдаются в демографии, страховом деле, анализе происшествий и катастроф, статистике населения и экономике. С середины 19 века статистические стали использоваться для исследования свойств макроскопических тел, состоящих из огромного числа микрочастиц (молекул, атомов, электронов). При этом считалось, что статистические законы можно было в принципе свести к детерминистическим законам, присущим взаимодействию микрочастиц. Однако эти надежды рухнули с возникновением квантовой механики, которая доказала:

Что законы микромира имеют вероятностно-статистический характер;

Что точность измерения имеет определенный предел, который устанавливается принципом неопределенностей или неточностей В.Гейзенберга: две сопряженные величины квантовых систем, например, координата и импульс частицы нельзя одновременно определить с одинаковой точностью (в связи с чем и была введена постоянная Планка).

Итак, среди законов наиболее распространенными являются каузальные, или причинные, которые характеризуют необходимое отношение между двумя непосредственно связанными явлениями. Первое из них, которое вызывает или порождает другое явление, называют причиной. Второе явление, представляющее результат действия причины, называют следствием (действием). На первой эмпирической стадии исследования обычно изучают простейшие причинные связи между явлениями. Однако в дальнейшем приходится обращаться к анализу других законов, которые раскрывают более глубокие функциональные отношения между явлениями. Такой функциональный подход лучше всего реализуется при открытии теоретических законов, которые также называют законами о ненаблюдаемых объектах. Именно они играют решающую роль в науке, так как с их помощью удается объяснить эмпирические законы, а тем самым и многочисленные отдельные факты, которые они обобщают. Открытие теоретических законов несравненно более трудная задача, чем установление эмпирических законов.

Путь к теоретическим законам лежит через выдвижение и систематическую проверку гипотез. Если в результате многочисленных попыток становится возможным вывести из гипотезы эмпирический закон, тогда возникает надежда, что гипотеза может оказаться теоретическим законом. Еще большая уверенность возникает, если с помощью гипотезы можно предсказать и открыть не только новые важные, ранее неизвестные факты, но и неизвестные до этого эмпирические законы: универсальный закон всемирного тяготения смог объяснить и даже уточнить эмпирические по своему происхождению законы Галилея и Кеплера.

Эмпирические и теоретические законы являются взаимосвязанными и необходимыми стадиями изучения процессов и явлений действительности. Без фактов и эмпирических законов было бы невозможно открывать теоретические законы, а без них объяснить эмпирические законы.

Законы логики

Логика (с греч. слово, понятие, рассуждение, разум) – наука о законах и операциях правильного мышления. Согласно основному принципу логики, правильность рассуждения (вывода) определяется только его логической формой, или структурой, и не зависит от конкретного содержания входящих в него утверждений. Различие между формой и содержанием может быть сделано явным с помощью особого языка, или символики, оно относительно и зависит от выбора языка. Отличительная особенность правильного вывода в том, что от истинных посылок он всегда ведет к истинному заключению. Такой вывод позволяет из имеющихся истин получать новые истины с помощью чистого рассуждения, без обращения к опыту, интуиции.

Научное доказательство

Со времен греков говорить «математика», значит говорить «доказательство», так афористично Бурбаки определил свое понимание данного вопроса. Тут же и укажем, что в математике выделяют следующие типы доказательств: прямые, или методом перебора; косвенные доказательства существования; доказательство от противного: принципы наибольшего и наименьшего числа и метод бесконечного спуска; доказательство методом индукции.

Когда мы встречаемся с математической задачей на доказательство, нам предстоит снять сомнение в правильности четко сформулированного математического утверждения А – мы должны доказать или опровергнуть А. одной из самых занимательных задач подобного рода является доказательство или опровержение гипотезы немецкого математика Христиана Гольдбаха (1690 – 1764): если целое число четно и n больше 4, то n является суммой двух (нечетных) простых чисел, т.е. каждое число, начиная с 6, может быть представлено в виде суммы трех простых чисел. Справедливость этого утверждения для небольших чисел может проверить каждый: 6=2+2+2; 7=2+2+3, 8=2+3+3. Но произвести проверку для всех чисел, как того требует гипотеза, конечно же, невозможно. Требуется какое-то иное доказательство, нежели просто проверка. Однако, несмотря на все старания, такое доказательство до сих пор не найдено.

Утверждение Гольбаха, пишет Д.Пойа (Пойа Д. Математическое открытие. – М.: Физматгиз, 1976. – 448с.) сформулировано здесь в наиболее естественной для математических утверждений форме, так как оно состоит из условия и заключения: первая его часть, начинающаяся словом «если», является условием, вторая часть, начинающаяся словом «то» - заключением. Когда нам нужно доказать или опровергнуть математическое предложение, сформулированное в наиболее естественной форме, мы называем его условие (предпосылку) и заключение главными частями задачи. Чтобы доказать предложение, нужно обнаружить логическое звено, связывающее его главные части – условие (предпосылку) и заключение. Чтобы опровергнуть предложение, нужно показать (если возможно, то на контрпримере), что одна из главных частей – условие – не приводит к другой – к заключению. Многие математики пытались снять покров неизвестности с гипотезы Гольдбаха, но безуспешно. Несмотря на то, что для понимания смысла условия и заключения требуется совсем немного знаний, еще никому не удалось установить между ними строго аргументированную связь, и никто не смог привести противоречащий гипотезе пример.

Итак, доказательство – логическая форма мысли, которая является обоснованием истинности данного положения посредством других положений, истинность которых уже обоснована, или самоочевидна. Поскольку свойством быть истинной или ложной обладает лишь одна из уже рассмотренных нами форм мысли, а именно – суждение, то речь в определении доказательства идет именно о нем.

Доказательство – это подлинно рациональная, опосредованная мыслями форма отражения действительности. Логические связи между мыслями обнаружить значительно легче, чем между самими предметами, о которых говорят эти мысли. Логическими связями удобнее пользоваться.

Структурно доказательство состоит из трех элементов:

Тезис – положение, истинность которого следует обосновать;

Аргументы (или основания) – положения, истинность которых уже установлена;

Демонстрация, или способ доказательства – вид логической связи между самими аргументами и тезисом. Аргументы и тезис, поскольку они есть суждения, могут правильно связываться между собой либо по фигурам категорического силлогизма, либо по правильным модусам условно-категорического, разделительно-категорического, условно-разделительного, чисто условного или чисто разделительного силлогизмов.

Аристотель различал четыре вида доказательства:

Научные (аподиктические, или дидаскальные), обосновывающие истинность тезиса строго, правильно;

Диалектические, или полемические, т.е. те, которые обосновывают тезис в процессе ряда вопросов и ответов на них, уточнений;

Риторические, т.е. обосновывающие тезис только кажущимся правильным способом, в сущности же это обоснование только вероятное;

Эристические, т.е. обоснования, лишь кажущиеся вероятностными, а в сущности ложные (или софистические).

Предметом рассмотрения в логике являются лишь научные, т.е. правильные, регламентируемые этой наукой доказательства.

Дедуктивные доказательства распространены в математике, теоретической физике, философии и других науках, имеющих дело с объектами, которые не воспринимаются непосредственно.

Индуктивные доказательства более распространены в науках прикладного, опытного и экспериментального характера.

По типу связей аргументов и тезиса доказательства подразделяются на прямые, или прогрессивные, и косвенные, или регрессивные.

Прямые доказательства – те, в которых тезис обосновывается аргументами непосредственно, прямо, т.е. используемые аргументы выполняют роль посылок простого категорического силлогизма, где вывод из них будет являться тезисом нашего доказательства. Чтобы подчеркнуть очевидное преимущество, иногда прямые доказательства называют прогрессивными.

Воспользуемся примером из учебного пособия В.И.Кобзаря. (Кобзарь В.И. Логика в вопросах и ответах, 2009), заменив героев.

Для доказательства тезиса: «Мой друг сдает экзамен по истории и философии науки» следует привести следующие аргументы: «Мой друг – аспирант университета» и следующий: «Все аспиранты университетов сдают экзамен по истории и философии науки».

Эти аргументы позволяют сразу получить вывод, совпадающий с тезисом. В данном случае мы имеем прямое, прогрессивное доказательство, состоящее из одного умозаключения, хотя доказательство может состоять и из нескольких умозаключений.

Это же самое доказательство может быть оформлено и в несколько ином виде, как условно-категорический силлогизм: «Если все аспиранты университетов сдают экзамен по истории и философии науки, то и мой друг сдает экзамен, потому что он аспирант». Здесь, в условном суждении, сформулировано общее положение, а во второй посылке, в категорическом суждении, установлено, что основание этого условного суждения истинно. Согласно логической норме: при истинности основания условного суждения следствие его будет обязательно истинно, т.е. мы получаем в качестве вывода наш тезис.

Примером прямого доказательства является обоснование положения о том, что сумма внутренних углов треугольника на плоскости равна двум прямым. Правда, в этом доказательстве имеют место и наглядность, очевидность, поскольку доказательство сопровождается рисунками. Рассуждение таково: проведем через вершину одного из углов треугольника прямую, параллельную противоположной стороне его. При этом получаем равные углы, например, №1 и №4, №2 и №5 как накрест лежащие. Углы № 4 и №5 вместе с углом №3 составляют прямую линию. И в итоге становится очевидным, что сумма внутренних углов треугольника (№1, №2, №3) равна сумме углов прямой линии (№4, №3, №5), или два прямых угла.

Иное дело – косвенное доказательство , аналитическое, или регрессивное. В нем истинность тезиса обосновывается опосредованно, путем обоснования ложности антитезиса, т.е. положения (суждения), противоречащего тезису, либо путем исключения по разделительно-категорическому силлогизму всех членов разделительного суждения, кроме нашего тезиса, являющегося одним из членов этого разделительного суждения. В том и другом случае необходимо опираться на требования логики к этим формам мысли, на законы и правила логики.

Так, при формулировке антитезиса надо следить за тем, чтобы он был действительно противоречащим тезису, а не противоположным ему, потому что противоречие не допускает одновременной ни истинности, ни ложности этих суждений, а противоположность допускает их одновременную ложность.

При противоречии обоснованная истинность антитезиса выступает достаточным основанием ложности тезиса, а обоснованная ложность антитезиса, наоборот, косвенно обосновывает истинность тезиса. Обоснование же ложности противоположного тезису положения не является достаточным основанием для истинности самого тезиса, так как противоположные суждения могут быть и одновременно ложными. Косвенными доказательствами обычно пользуются тогда, когда нет аргументов для прямого доказательства, когда невозможно по разным причинам обосновать тезис прямо.

Например, не имея аргументов для прямого обоснования тезиса о том, что две прямые, параллельные третьей, параллельны и между собой, допускают противное, а именно то, что эти прямые не параллельные между собой. Если это так, значит, они где-то пересекутся и тем самым будут иметь общую для них точку. В этом случае получается, что через точку, лежащую вне третьей прямой, проходят две прямые, параллельные ей, что противоречит ранее обоснованному положению (через точку, лежащую вне прямой, можно провести только одну прямую, параллельную ей). Следовательно, наше допущение неверно, оно приводит нас к абсурду, к противоречию с уже известной истиной (ранее доказанному положению).

Бывают косвенные доказательства, когда обоснование того факта, что искомый объект существует, происходит без прямого указания такого объекта.

В.Л.Успенский приводит следующий пример. В некоторой шахматной партии противники согласились на ничью после 15-го хода белых. Доказать, что какая-то из черных фигур ни разу не передвигалась с одного поля доски на другое. Рассуждаем следующим образом.

Передвижение черных фигур по доске происходит лишь после хода черных. Если такой ход не есть рокировка, передвигается одна фигура. Если же ход есть рокировка, передвигаются две фигуры. Черные успели сделать 14 ходов, и лишь один из них мог быть рокировкой. Поэтому самое большое количество черных фигур, затронутых ходами, есть 15. А вот черных фигур всего 16. Значит, по крайней мере, одна из них не участвовала ни в каком ходе черных. Здесь мы не указываем такую фигуру конкретно, а лишь доказываем, что она есть.

Второй пример. В самолете летит 380 пассажиров. Доказать, что какие-то двое из них отмечают свой день рождения в один и тот же день года.

Рассуждаем так. Всего имеется 366 возможных дат для празднования дня рождения. А пассажиров больше. Значит, не может быть, чтобы у всех у них дни рождения приходились на разные даты, и непременно должно быть так, что какая-то дата является общей для двух человек. Ясно, что этот эффект будет обязательно наблюдаться, начиная с числа пассажиров, равного 367. А вот, если число равно 366, не исключено, что числа и месяцы их дней рождения будут для всех различны, хотя это и маловероятно. Кстати, теория вероятности учит, что если случайно выбранная группа людей состоит более чем из 22 человек, то более вероятно, что у кого-нибудь из них дня рождения будут совпадать, нежели, что у всех у них дни рождения приходятся на разные дни года.

Логический прием, примененный в примере с пассажирами самолета, носит название по имени знаменитого немецкого математика Густава Дирихле. Вот общая формулировка этого принципа: если имеется эн ящиков, в которых находится в общей сложности, по меньшей мере, эн+1 предметов, то непременно найдется ящик, в котором будет лежать по меньшей мере два предмета.

Можно предложить прямое доказательство существования иррациональных чисел – например, указать «число корень из 2», и доказать, что оно иррационально. Но можно предложить и такое косвенное доказательство. Множество всех рациональных чисел счетно, а множество всех действительных чисел несчетно; значит, бывают и числа, не являющиеся рациональными, т.е. иррациональные. Конечно, надо еще доказать счетность одного множества и несчетность другого, но это сделать сравнительно легко. Что касается множества рациональных чисел, то можно явно указать его пересчет. Что же до несчетности множества действительных чисел, то его – при помощи представления действительных чисел в виде бесконечных десятичных дробей – можно вывести из несчетного множества всех двоичных последовательностей.

Здесь следует пояснить, что бессчетное множество называется счетным, если его можно пересчитать, т.е. назвать какой-то его элемент первым; какой-то элемент, отличный от первого – вторым; какой-то отличный от первых двух – третьим и так далее. Причем ни один элемент множества не должен быть пропущен при пересчете. Бесконечное множество, не являющееся счетным, называется несчетным. Сам факт существования несчетных множеств весьма принципиален, поскольку показывает, что бывают бесконечные множества, количество элементов в которых отлично от количества элементов натурального ряда. Этот факт был установлен в 19 веке и является одним из крупнейших достижений математики. Заметим также, что множество всех действительных чисел является несчетным.

Доказательства от противного

Данный тип доказательств поясним на следующем примере. Пусть дан треугольник и два его неравных угла. Требуется доказать утверждение А: против большого угла лежит большая сторона.

Сделаем противоположное предположение В: сторона, лежащая в нашем треугольнике против большего угла, меньше или равна стороне, лежащей против меньшего угла. Предположение В вступает в противоречие с уже ранее доказанной теоремой о том, что в любом треугольнике против равных сторон лежат равные углы, а если стороны не равны, то против большей стороны лежит и больший угол. Значит, предположение В неверно, а верно утверждение А. интересно отметить при этом, что прямое доказательство (то есть не от противного) теоремы А оказывается намного более сложным.

Таким образом, доказательства от противного выстаивают таким образом. делают предположение, что верно утверждение В, противное, т.е. противоположное тому утверждению А, которое требуется доказать, и далее, опираясь на это В, приходят к противоречию; тогда заключают, что значит, В неверно, а верно А.

Принцип наибольшего числа

К научным доказательствам относятся принципы наибольшего и наименьшего числа и метод бесконечного спуска. Рассмотрим их кратко.

Принцип наибольшего числа утверждает, что в любом непустом конечном множестве натуральных чисел найдется наибольшее число.

Принцип наименьшего числа: в любом непустом (а не только в конечном) множестве натуральных чисел существует наименьшее число. Существует и вторая формулировка принципа: не существует бесконечной убывающей (т.е. такой, в которой каждый последующий член меньше предыдущего) последовательности натурального числа. Обе формулировки равносильны. Если бы существовала бесконечная убывающая последовательность натуральных чисел, то среди членов этой последовательности не существовало бы наименьшего. Теперь представим, что удалось найти множество натуральных чисел, в котором наименьшее число отсутствует; тогда для любого элемента этого множества найдется другой, меньший, а для него – еще меньший и так далее, так что возникает бесконечная убывающая последовательность натуральных чисел. Рассмотрим примеры.

Требуется доказать, что любое натуральное число, большее единицы, имеет простой делитель. Рассматриваемое число делится на единицу и на само себя. Если других делителей нет, то оно простое, а значит, является искомым простым делителем. Если же есть и другие делители, то берем из этих других наименьший. Если он будет делиться еще на что-то, кроме единицы и самого себя, то это что-то было бы еще меньшим делителем исходного числа, что невозможно.

Во втором примере нам потребуется доказать, что для любых двух натуральных чисел существует наибольший общий делитель. Поскольку мы договорились начинать натуральный ряд с единицы (а не с ноля), то все делители любого натурального числа не превосходят самого этого числа и, следовательно, образуют конечное множество. Для двух чисел множество их общих делителей (т.е. таких числе, каждое из которых является делителем для обоих рассматриваемых чисел) тем более конечно. Найдя среди них наибольшее, получаем требуемое.

Или, предположим, что в множестве дробей нет несократимой. Возьмем произвольную дробь из этого множества и сократим ее. Полученную тоже сократим и так далее. Знаменатели этих дробей будут все меньшими и меньшими, и возникнет бесконечная убывающая последовательность натуральных числе, что невозможно.

Данный вариант метода от противного, когда возникающее противоречие состоит в появлении бесконечной последовательности убывающих натуральных чисел (чего быть не может), называется методом бесконечного (или безграничного) спуска.

Доказательства методом индукции

Метод математической индукции применяется тогда, когда хотят доказать, что некоторое утверждение выполняется для всех натуральных чисел.

Доказательство по методу индукции начинается с того, что формулируется два утверждения – базис индукции и ее шаг. Здесь проблем нет. Проблема состоит в том, чтобы доказать оба эти утверждения. Если это не удается, наши надежды на применение метода математической индукции не оправдываются. Зато если нам повезло, если удастся доказать и базис, и шаг, то доказательство универсальной формулировки мы получаем уже без всякого труда, применяя следующее стандартное рассуждение.

Утверждение А (1) истинно, поскольку оно есть базис индукции. Применив к нему индукционный переход, получаем, что истинно и утверждение А (2). применяя к А (2) индукционный переход, получаем, что истинно А (3). Применяя к А (3) индукционный переход, получаем, что истинно и утверждение А (4). таким образом мы можем дойти до каждого значения эн и убедиться, что А (эн) истинно. Следовательно, для всякого эн имеет место А (эн), а это и есть та универсальная формулировка, которую требовалось доказать.

Принцип математической индукции заключается, по существу, в разрешении не проводить стандартное рассуждение в каждой отдельной ситуации. действительно, стандартное рассуждение только что было обосновано в общем виде, и нет нужды повторять его каждый раз применительно к тому или иному конкретному выражению А (эн). Поэтому принцип математической индукции позволяет делать заключение об истинности универсальной формулировки, как только установлены истинность базиса индукции и индукционного перехода. (В.Л.Успенский, указ. соч., с. 360-361)

Необходимые пояснения. Утверждения А (1), А (2), А (3), … называются частными формулировками. Утверждение: для всякого эн имеет место А (эн) – универсальной формулировкой. Базис индукции – частная формулировка А (1). Шаг индукции, или индукционный переход, есть утверждение: каково бы ни было эн, из истинности частной формулировки А (эн) вытекает истинность частной формулировки А (эп + 1).

Опровержение доказательств

К проблеме обоснования знания имеет прямое отношение и вопрос об опровержении доказательств. Дело в том, что из действий с доказательством наиболее известно лишь одно из них, а именно – отрицание.

Отрицание доказательства и есть его опровержение. Опровержение – это обоснование ложности или несостоятельности того или иного элемента доказательства, т.е. или тезиса, или аргументов, или демонстрации, а иногда всех их вместе. Эта тема также хорошо раскрыта в пособии В.И.Кобзаря.

Многие свойства опровержения определяются свойствами доказательства, потому что опровержение структурно почти не отличается от доказательства. Опровергая тезис, опровержение с необходимостью формулирует и антитезис. Опровергая аргументы, выдвигаются другие. Опровергая демонстрацию доказательства, обнаруживают нарушение в нем взаимосвязей между аргументами и тезисом. В то же время опровержение в целом должно также демонстрировать своей структурой строгое соблюдение логических связей между своими аргументами и своим тезисом (т.е. антитезисом).

Обоснование истинности антитезиса можно рассматривать и как доказательство антитезиса, и как опровержение тезиса. Зато обоснование несостоятельности аргументов еще не доказывает ложности самого тезиса, а лишь указывает на ложности или недостаточность приведенных аргументов для обоснования тезиса, лишь отвергает их, хотя вполне возможно, что аргументы в пользу тезиса есть, и их даже много, но по разным причинам они в доказательстве не использовались. Таким образом, опровержение аргументов называть анти доказательством не всегда правильно.

Так же и с опровержением демонстрации. Обосновывая неправильность (нелогичность) связи тезиса с аргументами, или связи между аргументами в доказательстве, мы лишь указываем на нарушение логики, но этим не отрицаются ни сам тезис, ни те аргументы, которые были приведены. И то, и другое может оказаться вполне приемлемым – стоит лишь найти более правильные непосредственные или опосредованные связи между ними. Поэтому не всякое опровержение можно назвать опровержением доказательства в целом, точнее, не всякое опровержение отбрасывает доказательство в целом.

Соответственно видам опровержения (опровержение тезиса, опровержение аргументов и опровержение демонстрации) можно указать и способы опровержения. Так, тезис может быть опровергнут путем доказательства антитезиса и путем выведения следствий из тезиса, противоречащих очевидной действительности, или системе знания (принципам и законам теории). Аргументы могут быть опровергнуты как путем обоснования их ложности (аргументы только кажутся истинными, или некритически принимаются за истинные), так и путем обоснования того, что для доказательства тезиса приведенных аргументов мало. Опровергать можно и путем обоснования того, что используемые аргументы сами нуждаются в обосновании.

Опровергать можно также путем установления того, что источник фактов (оснований, аргументов) для обоснования тезиса является недостоверным: эффект подделанных документов.

Способов опровержения демонстрации в силу множества самих правил демонстрации достаточно много. Опровержение может указывать на нарушение любого правила умозаключения, если аргументы доказательства связываются не по правилам, то ли посылок, то ли терминов. Опровержение может обнажить нарушение связи аргументов с самим тезисом, указывая на нарушение правил фигур категорического силлогизма и их модусов, указывая на нарушение правил условного и разделительного силлогизмов.

Вот здесь полезно дать фальсификацию??