Что такое центрифугирование? Определение и принцип метода. Препаративное центрифугирование Центрифугирование в биологии изучение клетки

Что такое центрифугирование? Определение и принцип метода. Препаративное центрифугирование Центрифугирование в биологии изучение клетки
Что такое центрифугирование? Определение и принцип метода. Препаративное центрифугирование Центрифугирование в биологии изучение клетки

Лекция № 3.

Количество часов: 2

МЕТОДЫ ИССЛЕДОВАНИЯ КЛЕТОК

1. Световая микроскопия

2. Электронная микроскопия, п реимущества и недостатки. Разновидности электронной микроскопии

Клетки очень малы по размерам и в тоже время сложно устроены. Поэтому для успешного изучения строения и функционирования клетки необходимо знать и владеть соответствующими экспериментальными методами.

На первом этапе развития цитологии единственным способом изучения клетки было световое микроскопирование .

Микроскоп – это прибор, позволяющий получить увеличенное изображение мелких объектов, не видимых невооруженным глазом. В микроскопии принято использовать следующие единицы длины:

микрометр (1 мкм – 10 -6 м );

нанометр (1 нм – 10 -9 м );

ангстрем (1Å – 10 -10 м ).

Существуют световое и электронное микроскопирование. В световом микроскопе для получения увеличенного изображения используется свет, в электронном - поток электронов. Качество изображения определяется разрешающей способностью микроскопа. Разрешающая способность – это наименьшее расстояние, на котором оптика микроскопа может различить раздельно две близко расположенные точки. Разрешающая способность человеческого глаза составляет около 100 мкм. Это означает, что невооруженным глазом с расстояния 25 см наблюдатель со средней остротой зрения может отличить одну точку от другой, если они отстоят друг от друга на расстоянии не менее 100 мкм. Если рассматриваемые точки находятся на расстоянии менее 100 мкм, то они кажутся одной расплывчатой точкой. Лучший современный световой микроскоп дает возможность рассмотреть структуры с расстоянием между элементами около 0,25 мкм, электронный микроскоп - порядка 1,5 А.

Световое микроскопирование - это совокупность методов наблюдения микрообъектов с помощью различных оптических микроскопов. Эти методы существенно зависят от типа объектива микроскопа, вспомогательных приспособлений к нему, вида микрообъекта и способа подготовки его для наблюдения, а также от характера его освещения при наблюдении. Разрешающая способность светового микроскопа ограничена размерами, сравнимыми с длиной световой волны (0,4–0,7 мкм для видимого света). Однако многие элементы клеточной структуры значительно меньше по размерам. Кроме того, при использовании обычного светового микроскопа большинство структур живой клетки являются оптически пустыми. Оптически пустыми называют структуры, которые прозрачны и почти не отличаются по показателю преломления от окружающей их среды. Для выявления таких структур были разработаны различные способы фиксации и окраски материала.

Фиксация – это обработка, которая быстро прерывает процессы жизнедеятельности клетки и по мере возможности сохраняет неизменными структуру клеток и тканей. После фиксации клетки становятся проницаемыми для красителей, фиксируется местоположение и стабилизируется структура макромолекул.

Окрашивание применяется для оптической дифференциации клеточных структур, а также в цитохимических исследованиях для выявления мест локализации химических соединений. Например, основные красители (гематоксилин) обладают сродством к содержимому ядра, а кислотные красители (эозин) окрашивают цитоплазму. Для изучения живых клеток используются витальные (прижизненные) красители . Витальные красители сравнительно легко проникают в живые клетки и окрашивают некоторые структуры, не повреждая их. Все же витальные красители не совсем безвредны для клетки, и после длительного воздействия приводят ее к гибели. К витальным красителям относятся нейтральный красный (для окрашивания цитоплазмы), метиленовый синий (окраска комплекса Гольджи) и др. При помощи витальных красителей удалось доказать существование некоторых органоидов клетки, которых раньше принимали за артефакты.

Артефакт – изменение, которое возникает в ходе приготовления препарата.

Перед проведением исследований клетки или кусочки ткани обычно заливают в расплавленный парафин или специальную смолу. Использованная для заливки среда охлаждается или полимеризуется. В результате этого образуется твердый блок, который режут на очень тонкие срезы с помощью микротома. Обычно толщина срезов для световой микроскопии составляет 1-10 мкм. Недостатком этого метода является повреждение ряда структур клетки. Поэтому применяют метод приготовления срезов с помощью быстрого замораживания. Замороженную ткань режут на специальном микротоме (криотоме), оборудованном холодной камерой (криостатом).

Помимо обычной световой микроскопии изучение клетки проводится с помощью темнопольной, фазово-контрастной, флюоресцентной и некоторых других видов световой микроскопии.

Темнопольное микроскопирование. Темнопольный микроскоп в отличие от обычного снабжен специальным конденсором. В конденсоре имеется темная диафрагма, не пропускающая свет в центр поля зрения, так что объект освещается косым пучком. При этом в объектив микроскопа попадают только лучи, отраженные и рассеянные от поверхности объекта, что повышает контрастность некоторых структур и делает их видимыми. Темнопольную микроскопию применяют для наблюдения ряда структур в живой клетке. В частности темнопольную микроскопию используют для определения частоты повреждений акросомы у спермиев сельскохозяйственных животных.

Фазовоконтрастное микроскопирование. Фазовоконтрастный микроскоп был сконструирован Фрицем Зернике в 1932 г. Фазовоконтрастная микроскопия является отличным методом прижизненного наблюдения за клетками. Ее используют для изучения многих органоидов клетки и хромосом во время деления. В конденсоре фазовоконтрастного микроскопа имеется кольцевая диафрагма, через которую свет проходит в виде полого конуса, а остальные лучи поглощаются. В объективе находится фазовая пластинка, представляющая собой прозрачный диск, имеющий выемку. Форма и размер выемки совпадают с прямым изображением кольцевой диафрагмы. При помещении объекта между конденсором и объективом в задней фокальной плоскости объектива, кроме прямого изображения, появляется несколько перекрывающих друг друга дифракционных изображений диафрагмы. Выемка фазовой пластинки рассчитывается так, чтобы оба пучка лучей, образующих прямое и дифракционное изображение, отличались по оптическому пути на четверть длины волны. Таким образом, фазовые различия, которые раньше не улавливались глазом, превращаются в различия интенсивности и становятся видимыми.

Флуоресцентная микроскопия является хорошим методом прижизненного наблюдения клеток. Флуоресцентный микроскоп позволяет наблюдать флуоресценцию (свечение) ряда веществ и структур клетки. Флуоресценция объекта возбуждается ультрафиолетовыми или сине-фиолетовыми лучами от специальных источников света. Излучение объекта всегда имеет большую длину волны, чем возбуждающий свет. Объект рассматривается в лучах его флуоресценции, которые отделяются от лучей возбуждающего света при помощи светофильтров. Ряд веществ (некоторые витамины, пигменты, липиды) обладают собственной (первичной) флуоресценцией. Вещества клетки, не обладающие этим свойством, предварительно окрашивают специальными красителями – флюорохромами , а затем наблюдают вторичную флуоресценцию.

Электронное микроскопирование. В электронном микроскопе для построения изображения вместо света используют поток электронов в вакууме. Фокусировка электронного пучка производится не линзами, как в световом микроскопе, а электромагнитными полями. Изображение наблюдают на флюоресцирующем экране и фотографируют. Объекты при электронной микроскопии находятся в глубоком вакууме, поэтому предварительно их подвергают фиксации и специальной обработке. По этой причине с помощью электронного микроскопа можно изучать только убитые клетки. Кроме того, они должны быть очень тонкими, так как поток электронов сильно поглощается объектом. В этой связи в качестве объектов используют ультратонкие срезы толщиной 20-50 нм, помещенные на тончайшие пленки. В трансмиссионном (просвечивающем) электронном микроскопе электроны проходят сквозь объект так, как в световом микроскопе через него проходит свет. Просвечивающая электронная микроскопия применяется для изучения ультратонких срезов микробов, тканей, а также строения мелких объектов (вирусов, жгутиков и др.). В сканирующем электронном микроскопе точно сфокусированный пучок электронов движется взад и вперед по поверхности образца. При этом отраженные от его поверхности электроны собираются и формируют изображение. Преимущество использования этой разновидности электронного микроскопа заключается в том, что создается трехмерное изображение. Поэтому сканирующая электронная микроскопия используется для изучения поверхности объектов. Электронный микроскоп имеет разрешающую способность около 1–2 нм. Этого достаточно для изучения макромолекул.

Авторадиография. Этот метод основан на применении меченными радиоактивными изотопами веществ. Если добавить в среду радиоактивный изотоп, поглощаемый клетками в процессе метаболизма, то его внутриклеточную локализацию можно впоследствии выявить с помощью авторадиографии. При использовании этого метода тонкие срезы клеток помещают на пленку. Пленка темнеет под теми местами, где находятся радиоактивные изотопы. В качестве изотопов используют фосфор ( P 32 ), железо (Fe 59 ), серу (S 35 ), углерод (С 14), тритий ( H 3 ) и др.

Центрифугирование. Начало методу было положено в 1926 г., когда Сведберг изобрел аналитическую центрифугу и использовал ее для определения молекулярной массы гемоглобина. Перед центрифугированием необходимо разрушить клеточную оболочку. Разрушение проводят, используя ультразвуковую вибрацию, осмотический шок, измельчение, продавливание через маленькое отверстие. При осторожном разрушении некоторые органоиды клетки сохраняются в интактном состоянии. Измельченные ткани с разрушенными клеточными оболочками помещают в пробирки и вращают в центрифуге с большой скоростью. Метод основан на том, что различные клеточные органоиды имеют разную массу и плотность. Более плотные органоиды осаждаются в пробирке при низких скоростях центрифугирования, менее плотные - при высоких. Эти слои изучают отдельно. Так ядра и неразрушенные клетки, быстро оседают при относительно низких скоростях и образуют осадок на дне центрифужной пробирки. При более высокой скорости выпадают в осадок митохондрии, а еще при более высоких скоростях и длительных периодах центрифугирования осаждаются рибосомы. Обычно такие очищенные компоненты сохраняют высокую биохимическую активность.

Метод культуры клеток и тканей состоит в том, что из одной или нескольких клеток на специальной питательной среде можно получить группу однотипных клеток. Этот метод имеет колоссальные перспективы не только для цитологии, но и для медицины, сельского хозяйства. Так клеточные культуры используют для выяснения закономерностей дифференцировки, взаимодействия клеток со средой, адаптации, старения, трансформации и др. В биотехнологии клеточные культуры применяют при производстве вакцин и биологически активных веществ. В фармакологии их используют в качестве тест-объектов при испытании новых лекарственных препаратов. Основоположником этого метода является американский зоолог и эмбриолог Р. Гаррисон (1879-1959), которому в 1907 г. удалось культивировать клетки саламандры в искусственной среде вне организма. Впоследствии многие типы растительных и животных клеток выращивались in vitro , и этот метод позволил сделать ряд важных открытий в области физиологии клеток. Выражение in vitro (по-латыни «в стекле) означает, что исследование проведено не на живом организме, а в стеклянном сосуде того или иного рода. В противоположность первому выражению in vivo указывает на эксперимент с целым, живым организмом. Культуры, приготовленные непосредственно из тканей организма, называют первичными культурами. В большинстве случаев клетки первичной культуры можно перенести из культуральной чашки и использовать для получения большого количества вторичных культур. Клеточные линии можно использовать для получения кло6нов, которые происходят из одиночной клетки-предшественника. Можно осуществить слияние клеток одного или разных видов. Чтобы добиться слияния, клетки подвергают воздействию вирусных ферментов или полиэтиленгликоля. Эти вещества повреждают плазматическую мембрану клеток, что приводит к образованию клетки с двумя отдельными ядрами. Спустя определенное время такая клетка делится путем митоза, образуя гибридную клетку. В гибридной клетке все хромосомы объединены в одно большое ядро. Такие гибридные клетки можно клонировать и получить гибридную клеточную линию. Используя этот метод, удалось получить гибридные клетки человека и мыши, человека и жабы. Поученные гибридные клетки нестабильны и после многочисленных клеточных делений теряют большинство хромосом либо одного, либо другого вида. Конечный продукт становится, например, по существу клеткой мыши, где человеческие гены отсутствуют или имеются лишь в незначительном количестве. Поэтому эту методику с успехом можно использовать для картирования генов в хромосомах человека.

Микрургия. Этот метод основан на использовании микроманипуляторов. Они представляют собой приборы, обеспечивающие точные движения микроинструментов в клетке. Микроинструменты обычно делают из стекла. Их форма определяется задачами микрургических операций. Они могут быть в виде игл, шприцев, пипеток, шпателей, скальпелей и т. д. С помощью микроманипуляторов над клетками можно производить разнообразные операции (инъекции в клетку веществ, извлечение и пересадка ядер, локальное повреждение клеточных структур и т.д.). Особенно хорошо микрургические операции удаются на крупных клетках (одноклеточные, яйцеклетки амфибий, клетки зародышей некоторых животных). Так клетку амебы удается разделить на три основных компонента – мембрану, цитоплазму и ядро. Затем эти компоненты можно вновь собрать и получить живую клетку. Таким путем могут быть получены искусственные клетки, состоящие из компонентов разных видов амеб. Микрургические операции производятся не только микроинструментами, но сфокусированным пучком ультрафиолетовых лучей (лучевой микроукол).

Кроме названных методов при изучении клетки используют хроматографию, электрофорез и некоторые другие. Новые методы позволили достичь огромных успехов в изучении клетки. Однако следует помнить, что классические методы цитологии, основанные на фиксации, окрашивании и изучении клеток под световым микроскопом, по-прежнему сохраняют практическое значение.

Лекция 1.

Структура растительной клетки

Световая микроскопия

Электронная микроскопия

Дифференциальное центрифугирование

Метод культуры клеток

Клетка является основной структурной и функциональной единицей живых организмов.

Клетки эмбриональных (неспециализированных) тканей животных и растений в общем плане строения очень сходны. Именно это обстоятельство в свое время явилось причиной для появления и развития клеточной теории. Морфологические различия проявляются уже в дифференцированных клетках специализированных тканей растений и животных. Особенности строения растительной клетки, как и растения в целом, связаны с образом жизни и способом питания. Большинство растений ведет относительно неподвижный (прикрепленный) образ жизни. Специфика питания растений состоит в том, что вода и питательные вещества: органические и неорганические, находятся вокруг в рассеянном виде и растению приходится их поглощать путем диффузии. Кроме того, зеленые растения на свету осуществляют автотрофный способ питания. Благодаря этому, эволюционно сложились некоторые специфические особенности строения и роста растительных клеток. К ним относятся:

прочная полисахаридная клеточная стенка , окружающая клетку и составляющая жесткий каркас;

пластидная система , возникшая в связи с автотрофным типом питания;

вакуолярная система , которая в зрелых клетках обычно представлена крупной центральной вакуолью, занимающей до 95% объема клетки и играющей важную роль в поддержании тургорного давления ;

особый тип роста клеток путем растяжения (за счет увеличения объема вакуоли);

тотипотентность , то есть возможность регенерации полного растения из дифференцированной растительной клетки;

есть еще одна деталь, отличающая растительные клетки от клеток животных: у растений при делении клеток не выражены центриоли .

Строение клетки в самом общем виде известно вам еще из курса общей биологии и при подготовке к вступительным экзаменам вы достаточно хорошо штудировали эту тему. Эта тема в разных аспектах рассматривается и в соответствующих университетских курсах (например, зоология беспозвоночных, низшие растения). Кроме того, более детальное знакомство с клеткой на высоком уровне предстоит в курсе "цитология". Нам же важно акцентировать внимание на специфических особенностях строения растительной клетки, причем преимущественно клетки высшего растения.

При самом поверхностном рассмотрении структуры типичной растительной клетки в ее составе обнаруживаются три основных компонента: (1) клеточная стенка , (2) вакуоль, занимающая в зрелых клетках центральное положение и заполняющая практически весь их объем и (3) протопласт , оттесняемый вакуолью к периферии в виде постенного слоя. Именно эти компоненты обнаруживаются на малом увеличении светового микроскопа. Причем клеточная оболочка и вакуоль являются продуктами жизнедеятельности протопласта.

Живое тело клетки? протопласт состоит из органоидов, погруженных в гиалоплазму . К организмам клетки относятся: ядро, пластиды, митохондрии, диктиосомы, эндоплазматический ретикулум, микротельца и др. Гиалоплазма с органеллами за вычетом ядра составляет цитоплазму клетки.

Для выражения размеров субклеточных структур используются определенные меры длины: микрометр и нанометр .

Микрометр в системе единиц измерения СИ величина, равная 10 -6 м . Говоря другими словами, микрометр (аббревиатура мкм) составляет 1/1000000 долю метра и 1/1000 долю миллиметра. 1 мкм = 10 -6 м . Старое название этой меры микрон .

Нанометр в той же системе представляет миллионную долю миллиметра 1 нм = 10 -9 м и тысячную долю микрометра.

Размеры и форма растительных клеток варьируются в широком диапазоне. В типичном случае размеры клеток высшего растения колеблются в пределах 10 - 300 мкм. Правда, встречаются клетки - гиганты, например, клетки сочной мякоти плодов цитрусовых составляют в поперечнике несколько миллиметров или чрезвычайно длинные лубяные волокна у крапивы достигают 80 мм длины при микроскопической толщине.

По форме различают изодиаметрические клетки, у которых линейные размеры во всех направлениях равны или отличаются незначительно (то есть длина, ширина и высота этих клеток сопоставимы). Такие клетки называют паренхимными (паренхима) .

Сильно вытянутые клетки, у которых длина во много раз (иногда в сотни и тысячи) превышает высоту и ширину, называют прозенхимными (прозенхима) .

Методы изучения растительной клетки

Для изучения клеток разработано и применяется множество методов, возможности которых определяют уровень наших знаний в этой области. Успехи в изучении биологии клетки, включая наиболее выдающиеся достижения последних лет, как правило, связаны с применением новых методов. Поэтому для более полного понимания клеточной биологии необходимо иметь хотя бы некоторое представление о соответствующих методах исследования клетки.

Световая микроскопия

Самым древним и, вместе с тем, наиболее распространенным методом изучения клетки является микроскопия. Можно сказать, что и начало изучения клетки было положено изобретением светового оптического микроскопа.

Невооруженный человеческий глаз имеет разрешающую способность около 1/10 мм. Это означает, что если вы смотрите на две линии, которые находятся друг от друга на расстоянии меньше 0,1 мм, они сливаются в одну. Чтобы различить структуры, расположенные более тесно, применяют оптические приборы, например, микроскоп.

Но возможности светового микроскопа не безграничны. Предел разрешения светового микроскопа задается длиной световой волны, то есть оптический микроскоп может быть использован только для изучения таких структур, минимальные размеры которых сопоставимы с длиной волны светового излучения. Лучший световой микроскоп имеет разрешающую способность около 0.2 мкм (или 200 нм), то есть примерно в 500 раз улучшает человеческий глаз. Теоретически построить световой микроскоп с большим разрешением невозможно.

Многие компоненты клетки близки по своей оптической плотности и без специальной обработки практически не видны в обычный световой микроскоп. Для того, чтобы сделать их видимыми, используют различные красители , обладающие определенной избирательностью.

В начале XIX в. Возникла потребность в красителях для окрашивания текстильных тканей, что в свою очередь вызвало ускоренное развитие органической химии. Оказалось, что некоторые из этих красителей окрашивают и биологические ткани и, что было уж совсем неожиданно, часто предпочтительно связываются с определенными компонентами клетки. Использование таких избирательных красителей дает возможность более тонко исследовать внутреннее строение клетки. Приведем лишь несколько примеров:

краситель гематоксилин окрашивает некоторые компоненты ядра в синий или фиолетовый цвет;

после обработки последовательно флороглюцином и затем соляной кислотой одревесневшие оболочки клеток становятся вишнево - красными;

краситель судан III окращивает опробковевшие клеточные оболочки в розовый цвет;

слабый раствор йода в йодистом калии окрашивает крахмальные зерна в синий цвет.

Для проведения микроскопических исследований большую часть тканей перед окраской фиксируют . После фиксации клетки становятся проницаемыми для красителей, а структура клетки стабилизируется. Одним из наиболее распространенных фиксаторов в ботанике является этиловый спирт.

Фиксация и окрашивание не единственные процедуры, используемые для приготовления препаратов. Толщина большинства тканей слишком велика, чтобы их сразу можно было наблюдать при высоком разрешении. Поэтому выполняют тонкие срезы на микротоме . В этом приборе использован принцип хлеборезки. Для растительных тканей изготавливают чуть более толстые срезы, чем для животных, поскольку клетки растений обычно крупнее. Толщина срезов растительных тканей для световой микроскопии около 10 мкм - 20 мкм. Некоторые ткани слишком мягкие, чтобы из них сразу же можно было получить срезы. Поэтому после фиксации их заливают в расплавленный парафин или специальную смолу, которые пропитывают всю ткань. После охлаждения образуется твердый блок, который затем режется на микротоме. Правда, для растительных тканей заливка применяется значительно реже, чем для животных. Это объясняется тем, что растительные клетки имеют прочные клеточные стенки, составляющие каркас ткани. Особенно прочны одревесневшие оболочки.

Однако заливка может нарушить структуру клетки, поэтому применяют еще и другой метод, где эта опасность уменьшена? быстрое замораживание. Здесь можно обойтись без фиксации и заливки. Замороженную ткань режут на специальном микротоме (криотоме).

Замороженные срезы, приготовленные таким способом, имеют явное преимущество, поскольку в них лучше сохраняются особенности естественной структуры. Однако их труднее готовить, а присутствие кристаллов льда все же нарушает некоторые детали.

Микроскопистов всегда беспокоила возможность потери и искажения некоторых компонентов клетки в процессе фиксации и окраски. Поэтому полученные результаты проверяют другими методами.

Весьма заманчивой представлялась возможность исследовать под микроскопом живые клетки, но так, чтобы более отчетливо проявились детали их строения. Такую возможность дают особые оптические системы: фазово-контрастный и интерференционный микроскопы. Хорошо известно, что световые волны, подобно волнам воды, могут интерферировать друг с другом, увеличивая или уменьшая амплитуду результирующих волн. В обычном микроскопе, проходя через отдельные компоненты клетки, световые волны меняют свою фазу, хотя человеческий глаз этих различий не улавливает. Но за счет интерференции можно преобразовать волны, и тогда разные компоненты клетки можно отличить друг от друга под микроскопом, не прибегая к окрашиванию. В этих микроскопах используют 2 пучка световых волн, которые взаимодействуют (налагаются) друг на друга, усиливая или уменьшая амплитуду волн, поступающих в глаз от разных компонентов клетки.

Электронная микроскопия

Возможности светового микроскопа, как уже было сказано, ограничиваются длиной волны видимого света. Его максимальная разрешающая способность составляет примерно 0.2 мкм.

Большой шаг вперед был сделан в микроскопии в 20-х годах нашего века, когда было обнаружено, что соответствующим образом подобранные электромагнитные поля можно использовать подобно линзам для фокусирования пучков электронов.

Длина волны электрона значительно меньше, чет длина волны видимого света, и если вместо света использовать электроны, то предел разрешения микроскопа может быть заметно снижен.

На основе всего этого был создан микроскоп, в котором вместо света используется пучок электронов. Первый электронный микроскоп сконструировали в 1931 г. Кнолл и Руска в Германии. Прошло, однако, много лет, прежде чем появилась возможность изучать при помощи этого микроскопа срезы тканей. Лишь в 50-е годы были разработаны методы изготовления срезов, обладающих необходимыми качествами. С этого времени началась новая эра микроскопии, и в науку буквально хлынул поток информации о тонком строении клеток (ультраструктуре клеток).

Сложности электронной микроскопии состоят в том, что для исследования биологических образцов необходима специальная обработка препаратов.

Первая трудность заключается в том, что электроны обладают очень ограниченной проникающей способностью, поэтому следует изготавливать ультратонкие срезы, толщиной 50 - 100 нм. Для того, чтобы получить столь тонкие срезы, ткани сперва пропитывают смолой: смола полимеризуется и формирует твердый пластмассовый блок. Затем с помощью острого стеклянного или алмазного ножа срезы нарезают на специальном микротоме.

Есть еще одна трудность: при прохождении через биологическую ткань электронов не получается контрастного изображения. Для того, чтобы получить контраст, тонкие срезы биологических образцов пропитывают солями тяжелых металлов.

Существует два основных типа электронных микроскопов. В трансмиссионном (просвечивающем) микроскопе пучок электронов, проходя сквозь специально подготовленный образец, оставляет его изображение на экране. Разрешающая способность современного трансмиссионного электронного микроскопа почти в 400 раз больше светового. Эти микроскопы имеют разрешающую способность около 0,5 нм (для сравнения: диаметр атома водорода около 0,1 нм).

Несмотря на столь высокое разрешение, просвечивающие электронные микроскопы имеют крупные недостатки:

Трехмерное (объемное) изображение получают с помощью сканирующего электронного микроскопа (ЭМ). Здесь луч не проходит через образец, а отражается от его поверхности.

Исследуемый образец фиксируют и высушивают, после чего покрывают тонким слоем металла? операция называется оттенением (образец оттеняют).

В сканирующем ЭМ сфокусированный электронный пучок направляется на образец (образец сканируют). В результате металлическая поверхность образца испускает вторичные электроны слабой энергии. Они регистрируются и преобразуются в изображение на телевизионном экране. Максимальное разрешение сканирующего микроскопа невелико, около 10 нм, но зато изображение получается объемным.

Метод замораживания-скалывания

Принципиально новые возможности электронной микроскопии открылись сравнительно недавно, после разработки метода "замораживания - скалывания". С помощью этого метода исследуются тончайшие детали строения клетки, при этом получается объемное изображение в трансмиссионном электронном микроскопе.

При обычном замораживании в клетках образуются кристаллики льда, которые заметно искажают их структуру. Во избежание этого клетки замораживают очень быстро при температуре жидкого азота (- 196 С). При таком мгновенном замораживании кристаллы льда не успевают образоваться, и клетка не испытывает деформаций.

Замороженный блок раскалывают лезвием ножа (отсюда и название метода). Затем, обычно в вакуумной камере, избыток льда удаляют возгонкой. Эта операция называется травлением. После травления более резко обозначается рельеф в плоскости скола. Полученный образец оттеняется, то есть на поверхность образца напыляется тонкий слой тяжелых металлов. Однако весь фокус состоит в том, что напыление производится под углом к поверхности образца. Это очень важный момент. Появляется эффект тени, изображение выглядит объемным.

В трансмиссионном микроскопе электронный луч способен проникнуть только через очень тонкие срезы. Обычная толщина оттененных образцов чрезмерно велика, поэтому органическую материю, подстилающую слой металла, необходимо растворить. В результате остается тонкая металлическая реплика (или отпечаток) с поверхности образца. Реплику и используют в трансмиссионном микроскопе.

Этот метод предоставил, например, уникальную возможность наблюдать внутреннее строение мембран клетки.

Дифференциальное центрифугирование

Помимо микроскопии, другим основным и широко распространенным методом изучения клеток является дифференциальное центрифугирование или фракционирование.

Принцип метода состоит в том, что при центрифугировании развивается центробежная сила, под воздействием которой взвешенные частицы оседают на дно центрифужной пробирки.

После того, как в начале 40-х годов начали использовать ультрацентрифугу, разделение клеточных компонентов стало вполне реальным.

Прежде, чем подвергнуть клетки центрифугированию, их необходимо разрушить - разрушить жесткий каркас клеточных оболочек. Для этого используют различные методы: ультразвуковую вибрацию, продавливание через маленькие отверстия или самое обычное измельчение растительных тканей пестиком в фарфоровой ступе. При осторожном применении методов разрушения можно сохранить некоторые органеллы целыми.

При высокоскоростном центрифугировании крупные компоненты клетки (например, ядра) быстро оседают (седиментируют), при относительно низких скоростях и образуют осадок на дне центрифужной пробирки. При более высоких скоростях в осадок выпадают более мелкие компоненты, такие как хлоропласты и митохондрии.

То есть при центрифугировании компоненты клетки распадаются на фракции: крупные и мелкие, поэтому второе название метода? фракционирование. При этом, чем выше скорость и длительность цетрифугирования, тем мельче полученная фракция.

Скорость седиментации (осаждения) компонентов выражается с помощью коэффициента седиментации, обозначаемого S.

Этапы дифференциального центрифугирования: низкая скорость (ядра, цитоскелет), средняя скорость (хлоропласты), высокая скорость (митохондрии, ризосомы, микротельца), очень высокая скорость (рибосомы).

Фракционированные клеточные экстракты, называемые также бесклеточными системами, широко используются для изучения внутриклеточных процессов. Только работая с бесклеточными экстрактами, можно установить детальный молекулярный механизм биологических процессов. Так, использование именно этого метода принесло триумфальный успех в изучении биосинтеза белка.

Ну и вообще, чистые фракции внутриклеточных структур можно подвергать любым видам анализа.

Метод культуры клеток

Клетки животных, выделенные в культуру (то есть помещенные на питательную среду), погибают после определенного числа делений, поэтому считаются трудным и неудобным объектом для культивирования. Другое дело клетки растений, способные делиться неограниченное число раз.

Метод культуры клеток облегчает изучение механизмов клеточной дифференциации у растений.

На питательной среде клетки растений образуют однородную недифференцированную клеточную массу? каллус. Каллус обрабатывают гормонами. Под влиянием гормонов клетки каллуса могут давать начало разным органам.

Строение и жизнедеятельность растительной клетки.

1. Строение растительной клетки: целлюлозная оболочка, плазматическая мембрана, цитоплазма с органоидами, ядро, вакуоли с клеточным соком. Наличие пластид - главная особенность растительной клетки.

2. Функции клеточной оболочки - придает клетке форму, защищает от факторов внешней среды.

3. Плазматическая мембрана - тонкая пленка, состоит из взаимодействующих молекул липидов и белков, отграничивает внутреннее содержимое от внешней среды, обеспечивает транспорт в клетку воды, минеральных и органических веществ путем осмоса и активного переноса, а также удаляет вредные продукты жизнедеятельности.

4. Цитоплазма - внутренняя полужидкая среда клетки, в которой расположено ядро и органоиды, обеспечивает связи между ними, участвует в основных процессах жизнедеятельности.

5. Эндоплазматическая сеть - сеть ветвящихся каналов в цитоплазме. Она участвует в синтезе белков, липидов и углеводов, в транспорте веществ. Рибосомы - тельца, расположенные на ЭПС или в цитоплазме, состоят из РНК и белка, участвуют в синтезе белка. ЭПС и рибосомы - единый аппарат синтеза и транспорта белков.

6. Митохондрии - органоиды, отграниченные от цитоплазмы двумя мембранами. В них с участием ферментов окисляются органические вещества и синтезируются молекулы АТФ. Увеличение поверхности внутренней мембраны, на которой расположены ферменты, за счет крист. АТФ - богатое энергией органическое вещество.

7. Пластиды (хлоропласты, лейкопласты, хромопласты), их содержание в клетке - главная особенность растительного организма. Хлоропласты - пластиды, содержащие зеленый пигмент хлорофилл, который поглощает энергию света и использует ее на синтез органических веществ из углекислого газа и воды. Отграничение хлоропластов от цитоплазмы двумя мембранами, многочисленные выросты - граны на внутренней мембране, в которых расположены молекулы хлорофилла и ферменты.

8. Комплекс Гольджи - система полостей, отграниченных от цитоплазмы мембраной. Накапливание в них белков, жиров и углеводов. Осуществление на мембранах синтеза жиров и углеводов.

9. Лизосомы - тельца, отграниченные от цитоплазмы одной мембраной. Содержащиеся в них ферменты ускоряют реакцию расщепления сложных молекул до простых: белков до аминокислот, сложных углеводов до простых, липидов до глицерина и жирных кислот, а также разрушают отмершие части клетки, целые клетки.

10. Вакуоли - полости в цитоплазме, заполненные клеточным соком, место накопления запасных питательных веществ, вредных веществ; они регулируют содержание воды в клетке.

11. Клеточные включения - капли и зерна запасных питательных веществ (белки, жиры и углеводы).

12. Ядро - главная часть клетки, покрытая снаружи двухмембранной, пронизанной порами ядерной оболочкой. Вещества поступают в ядро и удаляются из него через поры. Хромосомы - носители наследственной информации о признаках организма, основные структуры ядра, каждая из которых состоит из одной молекулы ДНК в соединении с белками. Ядро - место синтеза ДНК, иРНК, рРНК.


Дифференциальное центрифугирование
Для получения клеточных фракций широко применяются различные виды центрифугирования: дифференциальное центрифугирование, зональное центрифугирование и равновесное центрифугирование в градиенте плотности. Теоретические и практические вопросы, связанные с центрифугированием, всесторонне разобраны в обзоре Сайкса .
В случае дифференциального центрифугирования образцы центрифугируют определенное время при задан
ие
ной скорости, после чего удаляют надосадочную жидкость. Этот метод полезен для разделения частиц, сильно различающихся по скорости седиментации. Например, центрифугирование в течение 5-10 мин при 3000- 5000 g приводит к осаждению интактных бактериальных клеток, тогда как большинство клеточных фрагментов при этом остается в надосадочной жидкости. Фрагменты клеточной стенки и большие мембранные структуры можно осадить центрифугированием при 20 000-50 000 g в течение 20 мин, в то время как маленькие мембранные везикулы и рибосомы требуют для осаждения центрифугирования при 200 000 g в течение 1 ч.
Зональное центрифугирование
Зональное центрифугирование представляет собой эффективный способ разделения структур, имеющих сходную плавучую плотность, но различающихся по форме и массе частиц. В качестве примеров можно привести разделение субъединиц рибосом, различных классов полисом, а также молекул ДНК, имеющих различную форму. Центрифугирование осуществляют либо в бакет-роторах, либо в специально устроенных зональных роторах; для предотвращения конвекции при центрифугировании в стаканах бакет-ротора или в камере зонального ротора создают слабый градиент (обычно сахарозы). Пробу наносят в виде зоны или узкой полосы в самом верху градиентного столбика. Для субклеточных частиц обычно используется градиент сахарозы от 15 до 40% (вес/объем); большинство этих частиц в достаточной степени разделяется центрифугированием при 100000 g в течение 1-4 ч.
Равновесное центрифугирование в градиенте плотности
При этом виде центрифугирования частицы разделяются по плавучей плотности, а не по скорости седиментации. Метод широко применяется для разделения различных фракций мембран, так как фрагменты мембран, относящиеся к одному и тому же типу, могут сильно различаться по размеру (и, следовательно, скорости седиментации), но должны иметь одинаковую плавучую плотность. Исследуемые компоненты движутся при цент-рифугировании в градиенте плотности растворенного вещества (для мембран и органелл с плотностью ниже
г/мл обычно используются сахарозные градиенты, а для более плотных структур, таких, как вирусы, применяют соли винной кислоты и хлористый цезий) до тех пор, пока не будет достигнуто равновесное положение, при котором плотность каждой частицы равна плотности окружающего раствора. Поскольку растворы сахарозы относительно вязкие, градиенты, как правило, фор-мируют заранее. У растворов хлористого цезия вязкость низкая, так что трудно заранее приготовить его градиентный раствор; в этом случае применяют технику изопикнического центрифугирования в градиенте плотности. Пробу смешивают с хлористым цезием в количестве, достаточном для создания плотности, равной средней плотности субклеточных частиц. Эту гомогенную смесь помещают в сосуд для центрифугирования, и в результате седиментации хлористого цезия в поле центробежных сил при центрифугировании формируется его градиент.
Поскольку скорость седиментации частицы постепенно снижается по мере достижения ею той области градиента, где она имеет плотность одинаковую с плотностью раствора, для достижения равновесия центрифугировать требуется очень долго. Это особенно важно для маленьких мембранных везикул, таких, как хроматофори, или для фрагментов цитоплазматических мем-бран клеток, разрушенных на прессе Френча, так как скорость седиментации этих частиц низка даже в отсутствие градиента. Если применять центробежные ускорения порядка 100 000-200 000 g, для более или менее хорошего разделения требуется не меньше 24 ч, а для полного - 72 ч.
Градиенты сахарозы
Концентрация сахарозы в растворах для приготовления градиентов указывается в литературе по-разному: в единицах плотности, в молях сахарозы, в весовых процентах сахарозы (вес/вес), в процентах на единицу объема (вес/объем или г/100 мл). В стандартных химических справочниках есть таблицы для перевода концентраций водных растворов сахарозы из одних единиц в другие. Чаще всего используются весовые проценты са-харозы. При приготовлении сахарозных растворов плотность воды или разбавленных буферов принимают равной 1 г/мл. Следовательно, чтобы приготовить, например, раствор 54%-ной (вес/вес) сахарозы, нужно растворить 54 г сахарозы в 46 мл воды. При этом образуется 100 г раствора, а поскольку плотность 54%-ного (вес/вес) раствора сахарозы равна 1,2451, конечный объем будет 80,3 мл. Приготовление растворов таким путем устраняет необходимость доведения вязких растворов до фиксированных величин объема.
Для создания градиентов промышленностью выпускаются разнообразные устройства, но их применение не обязательно, так как удовлетворительные по качеству градиенты можно приготовить, наслоив друг на друга в центрифужном стакане ряд сахарозных растворов и выдержав в течение ночи, чтобы за счет диффузии образовался непрерывный градиент. Нет необходимости выдерживать градиенты, которые будут центрифугироваться 24 ч и больше, так как за время центрифугирования благодаря диффузии сформируется непрерывный градиент. Мы обычно готовим градиенты из пяти-семи слоев. Когда используются смачиваемые центрифужные стаканы, например, из нитроцеллюлозы или поликарбоната, слои можно наносить, давая им стекать вниз по стенке стакана из пипетки, которую держат под углом к стенке. Если берут несмачиваемые стаканы, такие, как полиалломерные или полипропиленовые, то кончик пипетки при добавлении раствора должен находиться в контакте с мениском, чтобы не происходило перемешивания.
Самый простой метод отбора фракций из сахарозных градиентов заключается в их выкачивании с по-мощью перистальтического насоса. Центрифужный стакан зажимают в круглых лапках (мы применяем кусок прозрачного плекса с просверленным по диаметру стакана отверстием, который зажимаем в лапках), а над ним в круглых лапках закрепляют трубочку небольшого диаметра из нержавеющей стали. Трубочку подсоединяют к насосу и опускают в стакан до соприкосновения с дном. Затем градиентный столбик с помощью насоса раскапывают по находящимся в коллекторе фракций мерным пробиркам.
Детергенты
Детергенты применяются при фракционировании клеток в трех случаях. Когда хотят получить немембранные органеллы, такие, как рибосомы, нуклеоиды и т. д., детергенты обеспечивают мягкое лизирование клеток после нарушения целостности муреина (грамположи- тельные бактерии) или наружной мембраны (грамотри- цательные бактерии). Детергенты применяют также для того, чтобы избирательно перевести в раствор цитоплазматическую мембрану грамотрицательных бактерий, сохранив интактной наружную мембрану, или удалить мембранные загрязнения с рибосом, полисом и стенок грамположительных клеток.
Детергенты представляют собой амфипатические молекулы, т. е. молекулы, имеющие как гидрофильную, так и гидрофобную области; они умеренно растворяются в воде. В очень низких концентрациях детергенты образуют в воде истинный раствор. По мере возраста-ния концентрации молекулы детергента агрегируют с образованием мицелл, в каждой из которых гидрофильные области обращены к воде, а гидрофобные скрыты от воды внутри мицеллы. Концентрацию, при которой по мере добавления детергента к воде начинают образовываться мицеллы, называют критической концентрацией мицеллообразования (ККМ). Каждый детергент характеризуется своими ККМ, размерами и формой ми-целл. Превосходный обзор Хелениуса и Симонса суммирует свойства многих детергентов, применяемых для получения клеточных фракций.
Детергенты можно подразделить на три класса, различающиеся по свойствам мицелл, способности связываться с белками и способности взаимодействовать с другими растворенными веществами. К этим классам относятся ионные детергенты, неионные детергенты и соли желчных кислот. С каждым детергентом связаны свои трудности и свои преимущества при фракционировании клеток.
Ионные детергенты
К самым распространенным ионным детергентам относятся додецилсульфат натрия (лаурилсульфат натрия, ДСН), N-лаурилсаркозинат натрия (саркозил), алкил- бензосульфонаты (обычные, применяемые в домашнем хозяйстве детергенты) и соли четвертичных аминов, такие, как бромид цетилтриметиламмония (цетавлон). Ионные детергенты склонны образовывать небольшие мицеллы (с мол. массой - 10 ООО) и имеют относительно высокую ккм (для ДСН ККМ при комнатной температуре в разведенных буферах составляет примерно 0,2%). На ККМ и растворимость ионных детергентов сильно влияют ионная сила раствора и природа присутствующих в нем противоионов. К примеру, 10%-ный раствор ДСН теряет стабильность при температуре около 17 °С, в то время как сходный раствор додецилсуль- фата в трисе стабилен при 0°С. Додецилсульфат калия растворим только при повышенных температурах, и поэтому при использовании этого детергента К+ следует исключать из всех буферов.
Такие детергенты, как ДСН, которые имеют сильно ионизированную гидрофильную группу, не подвержены влиянию изменения реакции среды в широком диапазоне pH и не осаждаются 5%-ной трихлоруксусной кислотой. Ионные детергенты сильно связываются с белками, и в случае ДСН обычно происходит разворачивание и необратимая денатурация белковых молекул. Хотя ионные детергенты можно удалить диализом, как правило, этого не делают из-за значительного связывания их с белками.
Неионные детергенты
К неионным детергентам относятся тритон Х-100, нонидет Р-40 (NP-40), твин 80 и октилглюкозид. Обычно мицеллы этих детергентов обладают большой моле-кулярной массой (50 000 и больше) и низкой ККМ (0,1% и ниже), что ограничивает их применимость при гель-фильтрации или гель-электрофорезе. На свойства этих детергентов в растворе почти не влияют реакция среды и ионная сила, хотя они могут осаждаться 5%-ной трихлоруксусной кислотой. Неионные детергенты связываются только с гидрофобными белками и, как правило, не вызывают денатурации или потери биологической активности.
Соли желчных кислот
Соли желчных кислот представляют собой соли сте- риновых производных, например холат, дезоксихолат или таурохолат натрия. Из-за того что массивные стери- новые ядра плохо упаковываются, эти детергенты образуют небольшие мицеллы (часто всего из нескольких молекул), а молекулярная масса последних в отличие от других детергентов является функцией концентрации детергента. Поскольку эти детергенты - соли очень плохо растворимых кислот со значениями рКа в области 6,5-7,5, их следует использовать в щелочных диапазонах значений pH. Чтобы избежать трудностей с растворением, применяют концентрированные исходные растворы, которые готовят, растворяя в избытке NaOH соответствующую свободную кислоту. При работе с этими детергентами ионный состав, значение pH и общая концентрация детергента должны поддерживаться на по-стоянном уровне.
Проблемы,
возникающие при использовании детергентов
Поскольку большинство детергентов используется в концентрациях, довольно сильно превосходящих ККМ, и поскольку действие детергентов обусловлено образованием смешанных мицелл с липидами или связыванием с белками, отношения детергент: белок или детер-гент: липид значительно важнее истинной концентрации детергента. Как правило, достаточный избыток детергента обеспечивается при соотношении 2-4 мг детергента к 1 мг белка. Например, если для солюбилизации мембран используется 2%-ный тритон Х-100, концентрация белка в пробе должна быть не больше 5-10 мг/мл.
Тритон Х-100, один из самых ценных неионных детергентов, создает трудности при измерениях количества белка, поскольку он содержит ароматический остаток, препятствующий измерению поглощения при 280 нм, а в пробах с участием химических реагентов образует мутный осадок. Мы обычно преодолеваем эту трудность с помощью мечения культуры небольшим количеством 3Н-лейцина. Если метка вводится в минимальную или синтетическую солевую среду, следует позаботиться о том, чтобы добавить туда достаточное количество немеченого лейцина, обеспечив тем самым постоянное в течение всего периода роста включение изотопа из расчета на 1 мг белка. Для Е. coliдостаточно добавить в качестве носителя 20-40 мкг немеченого лейцина, чтобы достичь равномерного включения метки. Когда ввести метку по каким-либо соображениям невозможно, содержание белка измеряют и в присутствии тритона Х-100 модифицированным методом Лоури, описанным в работе [П]. в соответствии с которым к пробе добавляют избыток ДСН. Последний образует стабильные смешанные мицеллы с тритоном, не мешающие измерениям.
Тритон Х-100 и другие сходные с ним неионные детергенты растворяются в водно-спиртовых смесях, а белки из таких смесей можно выделить осаждением в этаноле. Пробу помещают на лед и к ней добавляют при перемешивании 2 объема охлажденного на льду абсолютного этанола. Смесь выдерживают в течение ночи в морозильнике и собирают осадок белка центрифугированием. Для эффективного осаждения требуется концентрация белка не меньше 0,2 мг/мл. Разбавленные растворы белка концентрируют в аппарате для ультрафильтрации фирмы Amicon с помощью фильтра РМ-30. Правда, следует иметь в виду, что при этом концентрируются также и мицеллы детергента.
ДСН удаляют из проб ацетоновым осаждением. Шесть объемов безводного ацетона добавляют к пробе при комнатной температуре, а выпавший осадок отделяют центрифугированием. Осадок промывают несколько раз водно-ацетоновой смесью (б -1). Так как осадок часто оказывается воскообразным и с ним трудно работать, мы обычно диспергируем его в воде гомогенизатором Поттера, а затем лиофилизуем.
Электрофорез в полиакриламидном геле
Электрофорез в полиакриламидном геле в присутствии ДСН представляет собой самый простой и самый эффективный способ выявления набора полипептидов, присутствующих в субклеточных фракциях. Этот метод сейчас во многих случаях заменяет ферментативный и химический анализ при установлении чистоты и гомогенности субклеточных фракций.
Для электрофореза в полиакриламидном геле используются разнообразные выпускаемые промышленностью и самодельные приборы. Мы предпочитаем те приборы, которые позволяют проводить разделение в тонких пластинах геля, что обеспечивает оптимальное разрешение. Лучшее разрешение на пластинах обусловлено тем, что возникающее во время электрофореза тепло здесь легко рассеивается, а также тем, что гель после электрофореза можно быстро фиксировать. Последнее важно для того, чтобы свести к минимуму диффузию белка в полосах. Пластины позволяют одновременно сравнивать много проб, и их легко сохранять после высушивания на листах фильтровальной бумаги. Радиоактивность в пробах выявляют радиоавтографией и фотофлюорографией, а высушенные на фильтровальной бумаге гели можно легко нарезать ножницами или резаком и после повторного насыщения водой вырезанных сухих полосок просчитывать на сцинтилляционном счетчике. Если не требуется большая разгонка в геле, электрофорез, фиксацию, окраску и высушивание успевают проводить за один день.
Для гель-электрофореза в присутствии ДСН имеется большой набор буферных систем. Лучшее разрешение дают концентрированные буферные системы, у которых верхний (электродный) буфер содержит ионы, обладающие большой подвижностью и движущиеся через гель в виде передней зоны, или фронта. К моменту вхождения в разделяющий гель белки сжимаются этим движущимся фронтом в узкую полосу, а войдя в него, задер-живаются за счет того, что гель обладает свойствами «сита». Описанная ниже система представляет собой модификацию концентрирующей буферной системы, предложенной Лэмли . См. также разд. 26.5.1.
Разделяющий, или разгоняющий, гель содержит 11,5% акриламида, 0,2% бисакриламида и 0,1% ДСН в 0,375 М трис-буфере, доведенном НС1 до pH 8.8. Полимеризация инициируется удалением воздуха из раствора и добавлением тетраметилэтилендиамина (до 0,8%) и персульфата аммония (до 0,015%). Пока не произойдет полимеризация, разделяющий гель держат под слоем воды. Воду выливают и наслаивают концентрирующий гель, или гель для нанесения, содержащий 4,5% акриламида, 0,12% бисакриламида и 0,1 % ДСН в 0,125 М трис-буфере, доведенном НС1 до pH 6,8. Этот гель по- лимеризуется добавлением тетраметилэтилендиамина (до 0,125%) и персульфата аммония (до 0,05%). Перед полимеризацией, чтобы сформировать лунки для проб, в концентрирующий гель вставляют тефлоновую (фторопластовую) гребенку. После полимеризации образовавшиеся лунки промывают несколько раз электродным буфером, содержащим небольшое количество бромфено- лового синего. При этом удаляется непрореагировавший персульфат, а границы лунок слегка окрашиваются, так что их можно видеть при нанесении проб. Верхний электродный буфер содержит 0,182 М глицин, 0,0255 М трис (конечное значение pH 8,3) и 0,1% ДСН. Нижний электродный буфер содержит те же компоненты, за исключением ДСН.
Пробы растворяют в буфере для концентрирующего геля, к которому добавлены 12,5 % глицерина, 1,25% ДСН и 1,25% 2-меркаптоэтанола. До электрофореза их прогревают в течение 5 мин в кипящей водяной бане для того, чтобы прошла полная диссоциация и денатурация всех белков. В качестве красящей метки к пробам можно добавить бромфеноловый синий или феноловый красный. Окончательно приготовленные пробы должны содержать 1-5 мг/мл белка, причем в маленькие лунки (3X0,75 мм) достаточно вносить 5-25 мкг белка. Так как проводимость геля меняется по мере прохождения через него концентрирующего буфера, следует поддерживать постоянными напряжение или мощность, а не ток.
Пока исследуемая смесь не вошла в разделяющий гель, устанавливается начальное напряжение, равное 50 В; затем напряжение повышают до 145 В на весь остаток пути. Для наилучшего разрешения температура геля должна быть 25 °С.
Самый распространенный недостаток электрофореза в полиакриламиде состоит в искривлении полос вследствие неправильно проведенной полимеризации. Чтобы этого не было, гелевые растворы нужно тщательно дегазировать перед заливкой, а верхнюю кромку разделяющего геля после полимеризации несколько раз промы-вать, чтобы удалить все остатки незаполимеризовавше- гося геля. Реактивы для электрофореза бывают разными по чистоте, и для того, чтобы время полимеризации было всегда постоянным, необходимо увеличивать или уменьшать количество персульфата аммойия. Для разделяющего геля оптимальное время полимеризации составляет ~30 мин. При большей длительности гель становится мягким или не полностью полимеризуется, а при меньшей - полимеризация может пройти неравномерно, что приведет к появлению волнистых белковых полос. Персульфат аммония очень гигроскопичен и не отличается стабильностью. Рекомендуется готовить исходный концентрированный раствор персульфата аммония (50 мг/мл), который хранят в замороженном состоянии порциями по 1 мл. Такой раствор стабилен в морозильной камере в течение нескольких месяцев.
Полосы могут быть также размазанными из-за присутствующих в пробе липидов и гликолипидов (распространенный случай - присутствие липополисахаридов). Липиды связывают значительную часть ДСН, и фактически их присутствие может привести к истощению ДСН, доступного для связывания с белками, мигрирующими в геле. Эту трудность преодолевают, увеличивая количество ДСН в верхнем электродном буфере до 1 % и выше.
Гели окрашивают по методу Фейербенкса и др. . При слабом покачивании гели вымачивают по 1 ч в каждом из следующих растворов: 1) 525 мл 95%-ного изопропанола, 200 мл ледяной уксусной кислоты, 1,0 г кумасси ярко-синего и 1275 мл воды; 2) 210 мл 95%-ного изопропанола, 200 мл ледяной уксусной кислоты, 0,1 г кумасси ярко-синего и 1590 мл воды; 3) 200 мл ледяной уксусной кислоты, 0,05 г кумасси ярко-синего и 1800 мл воды и 4) 10%-ная уксусная кислота. После полного обесцвечивания геля его вымачивают перед высушиванием в 10%-ной уксусной кислоте, содержащей 1 % глицерина.

Что такое центрифугирование? Для чего применяется метод? Термин "центрифугирование" означает разделение жидких либо твердых частиц вещества на различные фракции с помощью центробежных сил. Осуществляется такая сепарация субстанций благодаря использованию специальных аппаратов - центрифуг. В чем же заключается принцип метода?

Принцип центрифугирования

Рассмотрим более детально определение. Центрифугирование - это воздействие на вещества путем сверхскоростного вращения в специализированном аппарате. Главной частью любой центрифуги выступает ротор, который содержит гнезда для установки пробирок с материалом, что подлежит сепарации на отдельные фракции. Во время вращения ротора на повышенных скоростях в действие вступает Вещества, помещенные в пробирки, разделяются на различные субстанции согласно уровню плотности. Например, при центрифугировании образцов подземных вод отделяется жидкость и осаждаются содержащиеся в ней твердые частицы.

Автор метода

Впервые стало известно, что такое центрифугирование, после опытов, проведенных ученым А. Ф. Лебедевым. Метод был разработан исследователем с целью определения состава почвенных вод. Ранее в данных целях использовали отстаивание жидкости с последующим отделением от нее твердых образцов. Разработка метода центрифугирования позволила справляться с этой задачей гораздо быстрее. Благодаря такой сепарации возникла возможность для извлечения твердой доли веществ из жидкости в сухом виде на протяжении считаных минут.

Этапы центрифугирования

Дифференциальное центрифугирование начинается с отстаивания веществ, что подлежат исследованию. Такая обработка материала происходит в аппаратах-отстойниках. В ходе отстаивания частицы вещества разделяются под воздействием гравитации. Это позволяет подготовить субстанции к более качественной сепарации с помощью центробежных сил.

Далее вещества в пробирках подвергаются фильтрации. На этом этапе применяются так называемые перфорированные барабаны, что предназначаются для отделения жидких частиц от твердых. В ходе представленных мероприятий весь осадок остается на стенках центрифуги.

Преимущества метода

По сравнению с прочими методами, направленными на разделение отдельных субстанций, такими как фильтрование или отстаивание, центрифугирование дает возможность получать осадок с минимальным показателем влажности. Применение такого способа сепарации позволяет разделять тонкодисперсные суспензии. Результатом становится получение частиц размером в 5-10 мкм. Еще одним важным преимуществом центрифугирования выступает возможность его выполнения при помощи аппаратуры малых объемов и габаритов. Единственным недостатком метода выступает высокая энергоемкость приборов.

Центрифугирование в биологии

В биологии к сепарации веществ на отдельные субстанции прибегают при необходимости подготовки препаратов для исследования под микроскопом. Центрифугирование здесь производится на сложных устройствах - цитороторах. Такие аппараты помимо слотов для пробирок комплектуются держателями образцов, всевозможными предметными стеклами непростой конструкции. От устройства центрифуги при проведении исследований в биологии напрямую зависит качество получаемых материалов и, соответственно, количество полезной информации, которую можно почерпнуть из результатов анализа.

Центрифугирование в нефтеперерабатывающей промышленности

Метод центрифугирования незаменим при добыче нефти. Существуют углеводородные ископаемые, из которых не полностью выделяется вода при дистилляции. Центрифугирование дает возможность убрать лишнюю жидкость из состава нефти, повысив ее качество. В данном случае нефть растворяют в бензоле, затем нагревают до 60 о С, а затем подвергают воздействию центробежной силы. В завершение замеряют количество оставшейся воды в веществе и при необходимости повторяют процедуру.

Центрифугирование крови

Этот метод широко применяется для лечебных целей. В медицине он позволяет решать следующий ряд задач:

  1. Получение очищенных образцов крови для проведения плазмафереза. В данных целях в центрифуге отделяют форменные элементы крови от ее плазмы. Операция дает возможность избавить кровь от вирусов, избыточных антител, болезнетворных бактерий, токсинов.
  2. Подготовка крови для донорского переливания. После разделения телесной жидкости на отдельные фракции при помощи центрифугирования донору возвращают клетки крови, а плазма применяется для переливания либо замораживается в целях последующего использования.
  3. Выделение тромбоцитарной массы. Субстанцию получают из Полученную массу используют в хирургических и гематологических отделениях медицинских учреждений, в неотложной терапии, операционных. Применение тромбоцитарной массы в медицине дает возможность улучшить свертываемость крови у пострадавших.
  4. Синтез эритроцитарной массы. Центрифугирование клеток крови происходит путем деликатной сепарации ее фракций согласно специальной методике. Готовую массу, богатую эритроцитами, используют для переливания при кровопотерях, операциях. Эритроцитарная масса нередко применяется в целях лечения анемии, прочих заболеваний крови системного характера.

В современной медицинской практике применяется немало приборов нового поколения, которые дают возможность разгонять вращающийся барабан до определенной скорости и останавливать его в определенный момент. Это позволяет более точно разделять кровь на эритроциты, тромбоциты, плазму, сыворотку и сгустки. Аналогичным способом исследуются прочие телесные жидкости, в частности сепарируются вещества в составе мочи.

Центрифуги: основные типы

Мы разобрались, что такое центрифугирование. Теперь давайте выясним, какие аппараты применяются для реализации метода. Центрифуги бывают закрытыми и открытыми, с механическим или ручным приводом. Основной рабочей частью ручных открытых приборов выступает вращающаяся ось, расположенная вертикально. В ее верхней части перпендикулярно закреплена планка, где располагаются подвижные металлические гильзы. В них помещаются специальные пробирки, зауженные в нижней части. На дно гильз укладывают вату, что позволяет избежать повреждения стеклянной пробирки при соприкосновении с металлом. Далее аппарат приводят в движение. По истечении некоторого времени происходит отделение жидкости от твердых взвешенных частиц. После этого ручную центрифугу останавливают. На дне пробирок концентрируется плотный, твердый осадок. Над ним находится жидкая часть вещества.

Механические центрифуги закрытого типа обладают большим количеством гильз для размещения пробирок. Такие приборы более удобны по сравнению с ручными. Их роторы приводятся в движение мощными электромоторами и способны разгоняться до 3000 оборотов в минуту. Это дает возможность осуществлять более качественную сепарацию жидких субстанций от твердых.

Особенности подготовки пробирок при центрифугировании

Пробирки, что применяются для центрифугирования, должны быть наполнены исследуемым материалом идентичной массы. Поэтому для измерений здесь применяются специальные высокоточные весы. Когда требуется уравновешивание многочисленных пробирок в центрифуге, прибегают к следующему приему. Взвесив пару стеклянных емкостей и добившись одинаковой массы, одну из них оставляют в качестве эталона. Последующие пробирки уравновешивают с этим образцом, прежде чем поместить в аппарат. Такой прием существенно ускоряет работу при необходимости подготовки к центрифугированию целой серии пробирок.

Стоит заметить, что в пробирки никогда не помещают слишком много исследуемой субстанции. Стеклянные емкости наполняют таким образом, чтобы расстояние до края составляло не менее 10 мм. Иначе вещество будет выливаться из пробирки под воздействием центробежной силы.

Сверхцентрифуги

Для разделения составляющих чрезвычайно тонких суспензий недостаточно применения обычных ручных либо механических центрифуг. В данном случае требуется более внушительное воздействие на вещества со стороны центробежных сил. При реализации таких процессов применяются сверхцентрифуги.

Аппараты представленного плана оснащаются глухим барабаном в виде трубки незначительного диаметра - не более 240 мм. Длина такого барабана значительно превышает его сечение, что дает возможность в значительной степени повысить количество оборотов и создать мощнейшую центробежную силу.

В сверхцентрифуге исследуемое вещество поступает внутрь барабана, движется по трубке и ударяется о специальные отражатели, что отбрасывают материал на стенки прибора. Здесь же имеются камеры, предназначенные для раздельного вывода легких и тяжелых жидкостей.

К достоинствам сверхцентрифуг относятся:

  • абсолютная герметичность;
  • высочайшая интенсивность сепарации веществ;
  • компактные размеры;
  • возможность разделения субстанций на молекулярном уровне.

В заключение

Вот мы и выяснили, что такое центрифугирование. В настоящее время метод находит свое применение при необходимости выделения осадков растворов, очищения жидкостей, разделения компонентов биологически активных и химических веществ. Для сепарации субстанций на молекулярном уровне применяются ультрацентрифуги. Метод центрифугирования активно используется в химической, нефтяной, атомной, пищевой промышленности, а также в медицине.


Курсовая работа

Центрифугирование

1. Принцип метода

Разделение веществ с помощью центрифугирования основано на разном поведении частиц в центробежном поле. Суспензию частиц, помещенную в пробирку, загружают в ротор, установленный на валу привода центрифуги.

В центробежном поле частицы, имеющие разную плотность, форму или размеры, осаждаются с разной скоростью. Скорость седиментации зависит от центробежного ускорения, прямо пропорционального угловой скорости ротора и расстоянию между частицей и осью вращения:

а центробежное ускорение тогда будет равно)

Поскольку один оборот ротора составляет 2п радиан, угловую скорость ротора в оборотах в минуту можно записать так:

Центробежное ускорение обычно выражается в единицах g и называется относительное центробежное ускорение , т. е.

При перечислении условий разделения частиц указывают скорость вращения и радиус ротора, а также время центрифугирования. Центробежное ускорение обычно выражают в единицах g , рассчитанных из среднего радиуса вращения столбика жидкости в центрифужной пробирке. На основании уравнения Доулом и Котциасом была составлена номограмма, выражающая зависимость ОЦУ от скорости вращения ротора и радиуса г.

Скорость седиментации сферических частиц зависит не только от центробежного ускорения, но и от плотности и радиуса самих частиц и от вязкости среды суспендирования. Время, необходимое для осаждения сферической частицы в жидкой среде от мениска жидкости до дна центрифужной пробирки, обратно пропорционально скорости седиментации и определяется следующим уравнением:

где t -- время седиментации в секундах, rj -- вязкость среды, г ч --радиус частицы, р ч --плотность частицы, р -- плотность среды, г м -- расстояние от оси вращения до мениска жидкости, г д -- расстояние от оси вращения до дна пробирки.

Как следует из уравнения, при заданной скорости вращения ротора время, необходимое для осаждения гомогенных сферических частиц, обратно пропорционально квадрату их радиусов и разности плотностей частиц и среды и прямо пропорционально вязкости среды. Поэтому смесь гетерогенных, приблизительно сферических частиц, различающихся по плотности и размерам, можно разделить либо за счет разного времени осаждения их на дно пробирки при данном ускорении, либо за счет распределения седиментирующих частиц вдоль пробирки, устанавливающегося через определенный промежуток времени. При разделении веществ необходимо учитывать и такие важные факторы, как плотность и вязкость среды. Описанными методами можно разделять клеточные органеллы из гомогенатов тканей. Основные компоненты клетки осаждаются в следующей последовательности: сначала целые клетки и их фрагменты, затем ядра, хлоропласты, митохондрии, лизосомы, микросомы и, наконец, рибосомы. Осаждение несферических частиц не подчиняется уравнению, поэтому частицы одинаковой массы, но различной формы осаждаются при разных скоростях. Эта особенность используется при исследовании с помощью ультрацентрифугирования конформации макромолекул.

заключается в выделении биологического материала для последующих биохимических исследований. При этом можно брать большие количества исходного биологического материала, например посевы микробных клеток из периодических или непрерывных культур, а также посевы растительных и животных клеток из культур ткани и плазмы крови. С помощью препаративного центрифугирования выделяют большое количество клеточных частиц для изучения их морфологии, структуры и биологической активности. Метод применяется также для выделения таких биологических макромолекул, как ДНК и белки из предварительно очищенных препаратов.

Аналитическое центрифугирование применяется главным образом для изучения чистых или практически чистых препаратов макромолекул или частиц, например рибосом. В данном случае используется небольшое количество материала, а седиментация исследуемых частиц непрерывно регистрируется с помощью специальных оптических систем. Метод позволяет получать данные о чистоте, молекулярном весе и структуре материала. В практикумах для студентов препаративное центрифугирование применяется гораздо чаще, чем аналитическое, поэтому мы остановимся на нем более подробно, хотя в основе обоих методов лежат общие принципы.

2. Препаративное центрифугирование

2.1 Дифференциальное центрифугирование

Этот метод основан на различиях в скоростях седиментации частиц, отличающихся друг от друга размерами и плотностью. Разделяемый материал, например гомогенат ткани, центрифугируют при ступенчатом увеличении центробежного ускорения, которое выбирается так, чтобы на каждом этапе на дно пробирки осаждалась определенная фракция. В конце каждой стадии осадок отделяют от надосадочной жидкости и несколько раз промывают, чтобы в конечном итоге получить чистую осадочную фракцию. К сожалению, получить абсолютно чистый осадок практически невозможно; чтобы понять, почему это происходит, обратимся к рассмотрению процесса, происходящего в центрифужной пробирке в начале каждой стадии центрифугирования.

Сначала все частицы гомогената распределены по объему центрифужной пробирки равномерно, поэтому получить чистые препараты осадков самых тяжелых частиц за один цикл центрифугирования невозможно: первый образовавшийся осадок содержит в основном самые тяжелые частицы, но, кроме этого, также некоторое количество всех исходных компонентов. Получить достаточно чистый препарат тяжелых частиц можно лишь при повторном суспендировании и центрифугировании исходного осадка. Дальнейшее центрифугирование супернатанта при последующем увеличении центробежного ускорения приводит к седиментации частиц средних размеров и плотности, а затем и к осаждению самых мелких частиц, имеющих наименьшую плотность. На рис. 2.3 изображена схема фракционирования гомогената печени крысы.

Дифференциальное центрифугирование является, по-видимому, самым распространенным методом выделения клеточных органелл из гомогенатов тканей. Наиболее успешно применяется этот метод для разделения таких клеточных органелл, которые значительно отличаются друг от друга по размерам и плотности. Но даже и в этом случае получаемые фракции никогда не бывают абсолютно гомогенными, и для их дальнейшего разделения применяют другие методы, описанные ниже. Эти методы, основанные на различиях в плотности органелл, обеспечивают более эффективное разделение благодаря тому, что центрифугирование осуществляют в растворах с непрерывным или ступенчатым градиентом плотности. Недостатком этих методов является то, что приходится тратить время на получение градиента плотности раствора.

2.2 Зонально-скоростное центрифугирование

Метод зонально-скоростного, или, как его еще называют, s-зонального центрифугирования, заключается в наслаивании исследуемого образца на поверхность раствора с непрерывным градиентом плотности. Затем образец центрифугируют до тех пор, пока частицы не распределятся вдоль градиента в виде дискретных зон или полос. Благодаря созданию градиента плотности удается избежать смешивания зон, возникающего в результате конвекции. Метод зонально-скоростного центрифугирования применяется для разделения гибридов РНК--ДНК, субъединиц рибосом и других клеточных компонентов.

2.3 Изопикническое центрифугирование

Изопикническое центрифугирование проводят как в градиенте плотности, так и обычным путем. Если центрифугирование проводится не в градиенте плотности, препарат сначала центрифугируют так, чтобы осели частицы, молекулярный вес которых больше, чем у исследуемых частиц. Эти тяжелые частицы отбрасывают, и образец суспендируют в среде, плотность которой такая же, как и у фракции, которую хотят выделить, а затем центрифугируют до тех пор, пока исследуемые частицы не осядут на дно пробирки, а частицы меньшей плотности не всплывут на поверхность жидкости..

Другой способ заключается в наслаивании образца на поверхность раствора с непрерывным градиентом плотности, охватывающим диапазон плотностей всех компонентов смеси. Центрифугирование проводят до тех пор, пока плавучая плотность частиц не сравняется с плотностью соответствующих зон, т. е. пока не произойдет разделение частиц по зонам. Метод получил название зонально-изопикнического, или резонального центрифугирования, так как основным моментом здесь является плавучая плотность, а не размеры или форма частиц. На величину плотности, при которой частицы образуют изопикнические полосы, влияет природа среды суспендирования; частицы могут быть проницаемыми для одних соединений, находящихся в растворе, и непроницаемыми для других или же присоединять молекулы раствора. При использовании зонального ротора митохондрии, лизосомы, пероксисомы и микросомы концентрируются в полосах с 42%, 47%, 47% и 27%-ной сахарозой, соответствующих плотности 1,18, 1,21, 1,21 и 1,10 г-см -3 соответственно. Плотность субклеточных органелл зависит также и от избирательного поглощения ими определенных соединений. Введение крысам не вызывающего гемолиз детергента тритона WR-1339 приводит ^увеличению размеров и уменьшению плотности лизосом печени; плотность митохондрий и пероксисом остается без изменений. Несмотря на то что седиментационные свойства лизосом при этом, как правило, не меняются, их равновесная плотность в градиенте сахарозы понижается с 1,21 до 1,1, что приводит к соответствующему разделению лизосомально-пероксисомальной фракции. Эта особенность используется при количественном разделении лизосом, митохондрий и пероксисом, основанном на удалении из гомогенной среды всех частиц с большей, чем у микросом, плотностью и последующем изопикническом центрифугировании выпавших в осадок тяжелых частиц.

2.4 Равновесное центрифугирование в градиенте плотности

Для создания градиента плотности используют соли тяжелых металлов, например рубидия или цезия, а также растворы сахарозы. Образец, например, ДНК, смешивают с концентрированным раствором хлористого цезия. И растворенное вещество, и растворитель сначала распределяются по всему объему равномерно. В ходе центрифугирования устанавливается равновесное распределение концентрации, а следовательно, и плотности CsCl, так как ионы цезия обладают большой массой. Под действием центробежного ускорения молекулы ДНК перераспределяются, собираясь в виде отдельной зоны в части пробирки с соответствующей им плотностью. Метод применяется главным образом в аналитическом центрифугировании и был использован Мезельсоном и Сталем для изучения механизма репликации ДНК Е. coli . Равновесное центрифугирование в градиенте плотности является также одним из методов разделения и изучения липопротеидов плазмы крови человека.

2.5 Формирование и извлечение градиентов

2.5.1 Природа градиентов

Для создания градиентов плотности растворов чаще всего применяются растворы сахарозы, иногда с фиксированным рН. В некоторых случаях хорошее разделение получается при использовании вместо обычной воды D 2 0. В табл. 2.1 приведены свойства некоторых растворов сахарозы.

Выбор градиента диктуется конкретными задачами фракционирования. Так, например, фикол, выпускаемый фирмой Pharmacia Fine Chemicals, может заменять сахарозу в тех случаях, когда необходимо создать градиенты с большой плотностью и низким осмотическим давлением. Еще одно преимущество фикола состоит в том, что он не проходит через клеточные мембраны. Для создания градиентов большей плотности применяют соли тяжелых металлов, например рубидия и цезия, однако из-за коррозирующего действия CsCl такие градиенты используются только в роторах, изготовленных из стойких металлов, например титана»

2.5.2 Методика создания ступенчатого градиента плотности

Для создания градиента плотности в центрифужную пробирку осторожно вносят при помощи пипетки несколько растворов с последовательно уменьшающейся плотностью. Затем на самый верхний слой, имеющий наименьшую плотность, наслаивают образец в виде узкой зоны, после чего пробирку центрифугируют. Получить плавные линейные градиенты можно за счет сглаживания ступенчатых градиентов при длительном стоянии раствора. Процесс можно ускорить, осторожно перемешивая содержимое пробирки проволокой или слегка покачивая пробирку.

2.5.3 Методика создания плавного градиента плотности

В большинстве случаев для создания плавного градиента плотности пользуются специальным устройством. Оно состоит из двух цилиндрических сосудов строго определенного одинакового диаметра, сообщающихся друг с другом в нижней части с помощью стеклянной трубки с контрольным клапаном, что позволяет регулировать пропорции, в которых смешивается содержимое обоих сосудов. Один из них снабжен мешалкой и имеет выходное отверстие, через которое раствор стекает в центрифужные пробирки. Более плотный раствор помещают в смеситель; второй цилиндр заполняют раствором меньшей плотности. Высота столбика растворов в обоих цилиндрах устанавливается таким образом, чтобы гидростатическое давление в них было одинаковым. Более плотный раствор постепенно выпускается из смесителя в центрифужные пробирки и одновременно замещается равным объемом раствора меньшей плотности, поступающего в смеситель из второго цилиндра через контрольный клапан. Гомогенность раствора в смесителе обеспечивается за счет постоянного перемешивания раствора с помощью мешалки. По мере сливания раствора в центрифужные пробирки плотность его уменьшается и в пробирках создается линейный градиент плотности. Нелинейные градиенты можно создавать при помощи системы, состоящей из двух цилиндров неодинакового диаметра.

Для формирования градиентов плотности различной крутизны пользуются системой из двух механически управляемых шприцов, которые заполняют растворами неодинаковой плотности. Различные градиенты можно создавать, изменяя относительную скорость движения поршней.

2.5.4 Извлечение градиентов из центрифужных пробирок

После завершения центрифугирования и разделения частиц необходимо извлечь образовавшиеся зоны. Это делают несколькими способами, чаще всего методом вытеснения. Центрифужную пробирку прокалывают у основания и в нижнюю ее часть медленно вводят очень плотную среду, например 60--70%-ный раствор сахарозы. Находящийся сверху раствор вытесняется, и фракции отбирают при помощи шприца, пипетки или специального приспособления, соединенного через трубочку с коллектором фракций. Если пробирки изготовлены из целлулоида или нитроцеллюлозы, фракции извлекают, надрезав пробирку специальным лезвием. Для этого центрифужную пробирку, закрепленную в штативе, надрезают непосредственно под нужной зоной и отсасывают фракцию шприцом или пипеткой. При подходящей конструкции режущего устройства потеря раствора будет минимальной. Сбор фракций осуществляют также, проколов основание пробирки тонкой полой иглой. Капли, вытекающие из пробирки через иглу, собирают в коллектор фракций для дальнейшего анализа.

2.5.5 Препаративные центрифуги и их применение

Препаративные центрифуги можно подразделить на три основные группы: центрифуги общего назначения, скоростные центрифуги и препаративные ультрацентрифуги. Центрифуги общего назначения дают максимальную скорость 6000 об * мин -1 и ОЦУ до 6000 g . Они отличаются друг от друга только емкостью и имеют ряд сменных роторов: угловых и с подвесными стаканами. Одной из особенностей этого вида центрифуг является их большая емкость -- от 4 до 6 дм 3 , что позволяет загружать их не только центрифужными пробирками на 10,50 и 100 см 3 , но и сосудами емкостью до 1,25 дм 3 . Во всех центрифугах этого типа роторы жестко крепятся на валу привода, и центрифужные пробирки вместе с их содержимым должны быть тщательно уравновешены и различаться по весу не более чем на 0,25 г. Нельзя загружать в ротор нечетное число пробирок, а при неполной загрузке ротора пробирки следует размещать симметрично, одна против другой, обеспечивая таким образом равномерное распределение пробирок относительно оси вращения ротора.

Скоростные центрифуги дают предельную скорость 25 000 об-мин -1 и ОЦУ до 89000g. Камера ротора снабжена системой охлаждения, предотвращающей нагревание, которое возникает вследствие трения при вращении ротора. Как правило, скоростные центрифуги имеют емкость 1,5 дм 3 и снабжены сменными роторами, как угловыми, так и с подвесными стаканами.

Препаративные ультрацентрифуги дают предельную скорость до 75000 об-мин -1 и максимальное центробежное ускорение 510 000 g . Они снабжены как холодильником, так и вакуумной установкой, чтобы предотвратить перегрев ротора вследствие трения его о воздух. Роторы таких центрифуг изготавливают из высокопрочных алюминиевых или титановых сплавов. В основном применяют роторы из алюминиевых сплавов, однако в тех случаях, когда необходимы особенно высокие скорости, пользуются роторами из титана. Для уменьшения вибрации, возникающей в результате нарушения равновесия ротора из-за неравномерного наполнения центрифужных пробирок, ультрацентрифуги имеют гибкий вал. Центрифужные пробирки и их содержимое должны быть тщательно уравновешены с точностью до 0,1 г. Аналогичные требования следует соблюдать и при загрузке роторов центрифуг общего назначения.

2.6 Конструкция роторов

2.6.1 Угловые роторы и роторы с подвесными стаканами

Роторы препаративных центрифуг обычно бывают двух типов -- угловые и с подвесными стаканами. Угловыми они называются потому, что помещаемые в них центрифужные пробирки все время находятся под определенным углом к оси вращения. В роторах с подвесными стаканами пробирки устанавливаются вертикально, а при вращении под действием возникающей центробежной силы переходят в горизонтальное положение; угол наклона к оси вращения составляет 90°.

В угловых роторах расстояние, проходимое частицами до соответствующей стенки пробирки, весьма невелико, и поэтому седиментация происходит сравнительно быстро. После столкновения со стенками пробирки частицы соскальзывают вниз и образуют на дне осадок. При центрифугировании возникают конвекционные потоки, которые в значительной степени затрудняют разделение частиц с близкими седиментационными свойствами. Тем не менее роторы подобной конструкции с успехом применяются для разделения частиц, скорости седиментации которых различаются довольно сильно.

В роторах с подвесными стаканами также наблюдаются конвекционные явления, однако выражены они не так сильно. Конвекция является результатом того, что под действием центробежного ускорения частицы оседают в направлении, не строго перпендикулярном оси вращения, и поэтому, как и в угловых роторах, ударяются о стенки пробирки и соскальзывают на дно.

Конвекционных явлений и эффектов завихрения удается до некоторой степени избежать, используя пробирки секториальной формы в роторах с подвесными стаканами и регулируя скорость вращения ротора; перечисленных выше, недостатков лишен также метод центрифугирования в градиенте плотности.

2.6.2 Роторы непрерывного действия

Роторы непрерывного действия предназначены для скоростного фракционирования относительно небольших количеств твердого материала из суспензий больших объемов, например для выделения клеток из питательных сред. В ходе центрифугирования суспензия частиц добавляется в ротор непрерывно; пропускная способность ротора зависит от природы осаждаемого препарата и варьируете пределах от 100 см 3 до 1 дм 3 в 1 мин. Особенность ротора состоит в том, что он представляет собой изолированную камеру специальной конструкции; содержимое ее не сообщается с внешней средой, а поэтому не загрязняется и не распыляется.

2.6.3 Зональные роторы, или роторы Андерсона

Зональные роторы делают из алюминиевых или титановых сплавов, которые способны выдерживать весьма значительные центробежные ускорения. Обычно в них имеется цилиндрическая полость, закрывающаяся съемной крышкой. Внутри полости, на оси вращения расположена осевая трубка, на которую надевается насадка с лопастями, разделяющими полость ротора на четыре сектора. Лопасти или перегородки имеют радиальные каналы, по которым из осевой трубки к периферии ротора нагнетается градиент. Благодаря такой конструкции лопастей конвекция сведена до минимума.

Заполнение ротора производится при его вращении со скоростью около 3000 об/мин - 1 . В ротор нагнетают заранее созданный градиент, начиная со слоя наименьшей плотности, который равномерно распределяется по периферии ротора и удерживается у внешней его стенки перпендикулярно оси вращения благодаря центробежной силе. При последующем добавлении слоев градиента большей плотности происходит непрерывное смещение к центру менее плотных слоев. После того как в ротор будет нагнетен весь градиент, его заполняют до полного объема раствором, называемым «подушкой», плотность которого совпадает или несколько превышает наибольшую плотность преформированного градиента.

Затем через осевую трубку, наслаивают исследуемый образец, который вытесняют из трубки в объем ротора с помощью раствора меньшей плотности, при этом с периферии удаляется такой же объем «подушки». После всех этих процедур скорость вращения ротора доводят до рабочей и в течение необходимого промежутка времени проводят либо зонально-скоростное, либо зонально-изопикническое фракционирование. Извлечение фракций проводят при скорости вращения ротора 3000 об - мин -1 . Содержимое ротора вытесняют путем добавления с периферии «подушки», в первую очередь вытесняются менее плотные слои. Благодаря особой конструкции осевого канала ротора Андерсона смешивания зон при их вытеснении не происходит. Выходящий градиент пропускают через регистрирующее устройство, например ячейку спектрофотометра, с помощью которого по поглощению при 280 нм можно определить содержание белка, или через специальный детектор радиоактивности, после чего собирают фракции.

Емкость зональных роторов, используемых при средних скоростях, варьирует от 650 до 1600 см 3 , что позволяет получать довольно большое количество материала. Зональные роторы применяются для удаления белковых примесей из различных препаратов и для выделения и очистки митохондрий, лизосом, полисом и белков.

2.6.4 Анализ субклеточных фракций

Свойства полученного при фракционировании препарата субклеточных частиц можно отнести к свойствам самих частиц только в том случае, если препарат не содержит примесей. Следовательно, всегда необходимо оценивать чистоту получаемых препаратов. Эффективность гомогенизации и наличие в препарате примесей можно определить с помощью микроскопического исследования. Однако отсутствие видимых примесей еще не является достоверным доказательством чистоты препарата. Для количественной оценки чистоты полученный препарат подвергают химическому анализу, который позволяет установить содержание в нем белков или ДНК, определить его ферментативную активность, если возможно, и иммунологические свойства.

Анализ распределения ферментов во фракционируемых тканях основан на двух общих принципах. Первый из них заключается в том, что все частицы данной субклеточной популяции содержат одинаковый набор ферментов. Второй предполагает, что каждый фермент локализован в каком-то определенном месте внутри клетки. Если бы это положение было верно, то ферменты могли бы выступать в роли маркеров для соответствующих органелл: например, цито-хромоксидаза и моноаминооксидаза служили бы ферментами-маркерами митохондрий, кислые гидролазы -- маркерами лизосом, каталаза -- маркером пероксисом, а глюкозо-6-фосфатаза -- маркером мембран микросом. Оказалось, однако, что некоторые ферменты, например малатдегидрогеназа, Р -глюкуронидаза, НАДФ" Н-цитохром-с-редуктаза, локализованы более чем в одной фракции. Поэтому к выбору ферментов-маркеров субклеточных фракций в каждом конкретном случае следует подходить с большой осторожностью. Более того, отсутствие фермента-маркера еще не означает отсутствия соответствующих органелл. Вполне вероятно, что при фракционировании происходит потеря фермента органеллами или он ингибируется или инактивируется; поэтому для каждой фракции обычно определяют не менее двух ферментов-маркеров.

Фракция

Объем, см"

Общее разведение

Экснюк-ция, 660 нм

Единицы активности фермента

Выход активности во фракции, %

2.7 Фракционирование методом дифференциального центрифугирования

2.7.1 Оформление результатов

Результаты, полученные при фракционировании тканей, удобнее всего оформлять в виде графиков. Так, при исследовании распределения ферментов в тканях данные лучше всего представлять в виде гистограмм, дающих возможность визуально оценить результаты проведенных экспериментов.

Ферментативную активности содержание белка в пробе определяют как в исходном гомогенате, так и в каждой выделенной субклеточной фракции в отдельности. Суммарная ферментативная активность и содержание белка во фракциях не должны сильно отличаться от соответствующих значений в исходном гомогенате.

Затем проводят расчет ферментативной активности и содержания белка в каждой фракции в % от общего выхода, на основании чего составляют гистограмму. По оси абсцисс последовательно откладывают относительное количество_ белка в каждой фракции в порядке их выделения, а по оси ординат -- относительную удельную активность каждой фракции. Таким образом, по площади столбиков определяют ферментативную активность каждой фракции.

2.7.2 Аналитическое ультрацентрифугирование

В отличие от препаративного центрифугирования, целью которого является разделение веществ и их очистка, аналитическое ультрацентрифугирование применяется в основном для изучения седиментационных свойств биологических макромолекул и других структур. Поэтому в аналитическом центрифугировании применяют роторы и регистрирующие системы особой конструкции: они позволяют непрерывно наблюдать за седиментацией материала в центробежном поле.

Аналитические ультрацентрифуги могут развивать скорость до 70 000 об-мин -1 , создавая при этом центробежное ускорение до 500 000 g . Ротор у них, как правило, имеет форму эллипсоида и соединен посредством струны с мотором, что позволяет варьировать скорость вращения ротора. Вращается ротор в вакуумной камере, снабженной холодильным устройством, и имеет две ячейки, аналитическую и балансировочную, которые устанавливаются в центрифуге строго вертикально, параллельно оси вращения. Балансировочная ячейка служит для уравновешивания аналитической и представляет собой металлический блок с прецизионной системой. В ней имеются также два индексных отверстия, находящиеся на строго определенном расстоянии от оси вращения, с помощью которых определяют соответствующие расстояния в аналитической ячейке. Аналитическая ячейка, емкость которой, как правило, равна 1 см 3 , имеет секториальную форму. При правильной установке в роторе она, несмотря на то что стоит вертикально, работает по тому же принципу, что и ротор с подвесными стаканами, создавая почти идеальные условия седиментации. На торцах аналитической ячейки имеются окошки с кварцевыми стеклами. Аналитические ультрацентрифуги снабжены оптическими системами, позволяющими наблюдать за седиментацией частиц в течение всего периода центрифугирования. Через заданные промежутки времени седиментирующий материал можно фотографировать. При фракционировании белков и ДНК за седиментацией наблюдают по поглощению в ультрафиолете, а в тех случаях, когда исследуемые растворы имеют разные коэффициенты преломления -- с помощью шлирен-системы или интерференционной системы Рэлея. Два последних метода основаны на том, что при прохождении света через прозрачный раствор, состоящий из зон с различной плотностью, на границе зон происходит преломление света. При седиментации между зонами с тяжелыми и легкими частицами образуется граница, которая действует как преломляющая линза; при этом на фотопластинке, использующейся в качестве детектора, появляется пик. В ходе седиментации происходит перемещение границы, а следовательно, и пика, по скорости передвижения которого можно судить о скорости седиментации материала. Интерферометрические системы отличаются большей чувствительностью, чем шлирен-системы. Аналитические ячейки бывают односекторные, которые применяются наиболее часто, и двухсекторные, которые используются для сравнительного изучения растворителя и растворенного вещества.

В биологии аналитическое ультрацентрифугирование применяется для определения молекулярных весов макромолекул, проверки чистоты получаемых образцов, а также для исследования конформационных изменений в макромолекулах.

2.8 Применение аналитического ультрацентрифугирования

2.8.1 Определение молекулярных весов

Существует три основных метода определения молекулярных весов при помощи аналитического ультрацентрифугирования: определение скорости седиментации, метод седиментациоиного равновесия и метод приближения к седиментационному равновесию.

Определение молекулярного веса по скорости седиментации -- это наиболее распространенный метод. Центрифугирование проводят при больших скоростях, так что частицы, вначале равномерно распределенные по всему объему, начинают упорядочение перемещаться по радиусу от центра вращения. Между областью растворителя, уже свободной от частиц, и той его частью, которая их содержит, образуется четкая граница раздела. Эта граница при центрифугировании перемещается, что дает возможность определять скорость седиментации частиц при помощи одного из вышеупомянутых методов, регистрируя это перемещение на фотопластинке.

Скорость седиментации определяется следующим соотношением:

где х -- расстояние от оси вращения в см,

t -- время в с,

w -- угловая скорость в рад-с -1 ,

s --коэффициент седиментации "молекулы.

Коэффициент седиментации -- это скорость, отнесенная к единице ускорения, его измеряют в единицах Сеедберга ; 1 единица Сведберга равна 10 _13 с. Численное значение s зависит от молекулярного веса и формы частиц и является величиной, характерной для данной молекулы или надмолекулярной структуры. Например, коэффициент седиментации лизоцима равен 2,15 S; катал аза имеет коэффициент седиментации 11.35S, субъединицы рибосом бактерий -- от 30 до 50S, а субъединицы рибосом эукариотов -- от 40 до 60S.

где М -- молекулярный вес молекулы, R -- газовая постоянная, Т -- абсолютная температура, s -- коэффициент седиментации молекулы, D -- коэффициент диффузии молекулы, v -- парциальный удельный объем, который можно рассматривать как объем, занимаемый одним граммом растворенного вещества, р -- плотность растворителя.

Метод седиментациоиного равновесия. Определение молекулярных весов этим методом проводится при сравнительно небольших скоростях вращения ротора, порядка 7 000--8 000 об-мин -1 , чтобы молекулы с большим молекулярным весом не осаждались на дно. Ультрацентрифугирование проводят вплоть до достижения частицами равновесия, устанавливающегося под действием центробежных сил, с одной стороны, и диффузионных -- с другой, т. е. до тех пор, пока частицы не перестанут перемещаться. Затем по образовавшемуся градиенту концентрации рассчитывают молекулярный вес вещества "согласно формуле

где R -- газовая постоянная, Т -- абсолютная температура, ю -- угловая скорость, р -- плотность растворителя, v -- парциальный удельный объем, с х и с 2 -- концентрация растворенного вещества на расстояниях г г и г 2 от оси вращения.

Недостатком данного метода является то, что для достижения седиментациоиного равновесия необходимо длительное время -- от нескольких дней до нескольких недель при непрерывной работе центрифуги.

Метод приближения к седиментационному равновесию былразработан для того, чтобы избавиться от недостатков предыдущего метода, связанных с большими затратами времени, необходимого для "установления равновесия. С помощью этого метода можно определять молекулярные веса, когда центрифугируемый раствор находится в состоянии приближения к равновесию. Вначале макромолекулы распределяются по всему объему аналитической ячейки равномерно; затем по мере центрифугирования молекулы оседают, и плотность раствора в области мениска постепенно уменьшается. Изменение плотности тщательно регистрируют, а затем путем сложных расчетов, включающих большое число переменных, определяют молекулярный вес данного соединения по формулам:

где R -- газовая постоянная, Т -- абсолютная температура, v -- парциальный удельный объем, р -- плотность растворителя, dcldr -- градиент концентрации макромолекулы, г м и г д -- расстояние до мениска и дна пробирки соответственно, с м и с д -- концентрация макромолекул у мениска и у дна пробирки соответственно, М м и M R --величины молекулярных весов, определенные по распределению концентрации вещества у мениска и дна пробирки соответственно.

2.8.2 Оценка чистоты препаратов

Аналитическое ультрацентрифугирование широко применяется для оценки чистоты препаратов ДНК, вирусов и белков. Чистота препаратов несомненно очень важна в тех случаях, когда требуется точно определить молекулярный вес молекулы. В большинстве случаев о гомогенности препарата можно судить по характеру границы седиментации, используя метод определения скорости седиментации: гомогенный препарат обычно дает одну резкоочерченную границу. Присутствующие в препарате примеси проявляются в виде дополнительного пика или плеча; они же обусловливают асимметрию основного пика.

2.8.3 Исследование конформационных изменений в макромолекулах

Еще одна область применения аналитического ультрацентрифугирования -- исследование конформационных изменений макромолекул. Молекула ДНК, например, может быть одно- или двухцепочечной, линейной или кольцевой. Под действием различных соединений или при повышенных температурах ДНК претерпевает ряд обратимых и необратимых конформационных изменений, которые можно установить по изменению скорости седиментации образца. Чем компактнее молекула, тем меньше ее коэффициент трения в растворе и наоборот: чем менее она компактна, тем больше коэффициент трения и, следовательно, тем медленнее будет она седиментировать. Таким образом, различия в скорости седиментации образца до и после различных воздействий на него позволяют обнаруживать конформационные изменения, происходящие в макромолекулах.

У аллостерических белков, таких, например, как аспартат-транскарбамоилаза, конформационные изменения возникают в результате связывания их с субстратом и малыми лигандами. Диссоциацию белка на субъединицы можно вызывать, обработав его такими веществами, как мочевина или парахлормеркурибензоат. Все эти изменения легко можно проследить при помощи аналитического ультрацентрифугирования.

Подобные документы

    Особенности строения и роста растительных клеток. Методы изучения растительной клетки. Электронная микроскопия, возможности светового микроскопа. Метод замораживания-скалывания. Дифференциальное центрифугирование, фракционирование. Метод культуры клеток.

    реферат , добавлен 04.06.2010

    Выделение цереброзидов и сульфатидов головного мозга. Количественное определение фракций по углеводному компоненту. Удельная радиоактивность отдельных фракций цереброзидов и сульфатидов. Препаративное получение сфингозина. Метод периодатного окисления.

    доклад , добавлен 25.10.2014

    Основные механизмы деятельности клетки. Клетка как единица физиологических процессов обмена. Основные представления о регуляции. Функции клеточных органелл, мембранные системы внутриклеточных органелл. Обмен веществами между клеткой и окружающей средой.

    презентация , добавлен 04.02.2016

    Синтез белка Xvent-2 в клетках зародышей с целью дальнейшей дифференцировки стволовых клеток. Выделение клеточных органелл. Реагенты и растворы для изоэлектрического фокусирования. Получение биологического материала. Результаты работы и их обсуждение.

    курсовая работа , добавлен 27.06.2015

    Положение ситниковых в типологической классификации. Отличительные признаки покрытосеменных. Особенности строения клеток, тканей и субклеточных структур. Местообитание семейства ситниковых и особенности размножения. Самый крупный род семейства.

    курсовая работа , добавлен 10.10.2012

    Вещества, задерживающие прорастание из плодов и семян и их роль в расселении растений. Корневые выделения и их роль в аллелопатии. Природа аллелапатически активных веществ. Физиологическое и биохимическое действие аллелопатически активных веществ.

    реферат , добавлен 25.02.2016

    Ткань - частная система органа, состоящая из клеток и внеклеточных элементов с общей эпигеномной наследственностью. Эмбриональный гистогенез: детерминация, пролиферация, дифференциация, интеграция и адаптация клеточных систем. Общая классификация тканей.

    реферат , добавлен 23.12.2012

    Описание основных функций, выполняемых процессами выделения веществ у растений. Понятие аллелопатии, экскреции и секреции. Функции специализированных секреторных структур у растений. Группы эпидермальных образований, участвующих в выделении веществ.

    презентация , добавлен 15.03.2011

    Класификация тканей, виды эпителиальных тканей, их строение и функции. Опорная, трофическая и защитная функция соединительных тканей. Функции нервной и мышечной тканей. Понятие об органах и системах органов, их индивидуальные, половые, возрастные отличия.

    реферат , добавлен 11.09.2009

    История систематического изучения закономерностей эволюции тканей. Теория параллелизма гистологических структур. Теория дивергентной эволюции тканей. Теория филэмбриогенеза в гистологии. Эпителиальная, производные мезенхимы, мышечная и нервная ткань.